Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.8 * weight + 68
This means that on average for every extra kilogram weight a rider loses -0.8 positions in the result.
van Sintmaartensdijk
2
77 kgZijlaard
3
73 kgFortin
4
78 kgSweeck
5
71 kgSteininger
6
64 kgde Jong
7
72 kgNys
8
64 kgBouts
12
62 kgLindner
14
71 kgMalmberg
15
68 kgMacleod
16
57 kgHeming
17
68 kgRüegg
18
66 kgKamp
19
70 kgVanthourenhout
20
62 kgPaquet
21
60 kgBekaert
22
62 kgMaris
23
64 kgColeman
24
70 kgScott
25
66 kgKopecký
26
73 kgReißig
27
60 kgFeeley
28
59 kg
2
77 kgZijlaard
3
73 kgFortin
4
78 kgSweeck
5
71 kgSteininger
6
64 kgde Jong
7
72 kgNys
8
64 kgBouts
12
62 kgLindner
14
71 kgMalmberg
15
68 kgMacleod
16
57 kgHeming
17
68 kgRüegg
18
66 kgKamp
19
70 kgVanthourenhout
20
62 kgPaquet
21
60 kgBekaert
22
62 kgMaris
23
64 kgColeman
24
70 kgScott
25
66 kgKopecký
26
73 kgReißig
27
60 kgFeeley
28
59 kg
Weight (KG) →
Result →
78
57
2
28
# | Rider | Weight (KG) |
---|---|---|
2 | VAN SINTMAARTENSDIJK Daan | 77 |
3 | ZIJLAARD Maikel | 73 |
4 | FORTIN Filippo | 78 |
5 | SWEECK Laurens | 71 |
6 | STEININGER Fabian | 64 |
7 | DE JONG Timo | 72 |
8 | NYS Thibau | 64 |
12 | BOUTS Jordy | 62 |
14 | LINDNER Tom | 71 |
15 | MALMBERG Matias | 68 |
16 | MACLEOD Callum | 57 |
17 | HEMING Miká | 68 |
18 | RÜEGG Lukas | 66 |
19 | KAMP Ryan | 70 |
20 | VANTHOURENHOUT Michael | 62 |
21 | PAQUET Tom | 60 |
22 | BEKAERT Yentl | 62 |
23 | MARIS Elias | 64 |
24 | COLEMAN Zak | 70 |
25 | SCOTT Jared | 66 |
26 | KOPECKÝ Tomáš | 73 |
27 | REIßIG Patrick | 60 |
28 | FEELEY Daire | 59 |