Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 17
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Ballabio
1
70 kgBregnhøj
2
63 kgRonhaar
3
60 kgPrimožič
4
60 kgde Jong
6
72 kgvan den Broek
7
70 kgKnecht
8
66 kgMoreno
9
56 kgNolde
10
79 kgDina
11
67 kgHeiderscheid
12
73 kgVermeulen
13
67 kgKockelmann
14
70 kgHuby
15
56 kgIserbyt
16
55 kgWirtgen
17
77 kgWillems
18
67 kgDhaeye
22
71 kgCabedo
23
53 kgStosz
24
70 kgWenzel
25
68 kgBerlin
27
57 kgColeman
28
70 kg
1
70 kgBregnhøj
2
63 kgRonhaar
3
60 kgPrimožič
4
60 kgde Jong
6
72 kgvan den Broek
7
70 kgKnecht
8
66 kgMoreno
9
56 kgNolde
10
79 kgDina
11
67 kgHeiderscheid
12
73 kgVermeulen
13
67 kgKockelmann
14
70 kgHuby
15
56 kgIserbyt
16
55 kgWirtgen
17
77 kgWillems
18
67 kgDhaeye
22
71 kgCabedo
23
53 kgStosz
24
70 kgWenzel
25
68 kgBerlin
27
57 kgColeman
28
70 kg
Weight (KG) →
Result →
79
53
1
28
# | Rider | Weight (KG) |
---|---|---|
1 | BALLABIO Giacomo | 70 |
2 | BREGNHØJ Mathias | 63 |
3 | RONHAAR Pim | 60 |
4 | PRIMOŽIČ Jaka | 60 |
6 | DE JONG Timo | 72 |
7 | VAN DEN BROEK Frank | 70 |
8 | KNECHT Noah | 66 |
9 | MORENO Iván | 56 |
10 | NOLDE Tobias | 79 |
11 | DINA Márton | 67 |
12 | HEIDERSCHEID Colin | 73 |
13 | VERMEULEN Moran | 67 |
14 | KOCKELMANN Mathieu | 70 |
15 | HUBY Antoine | 56 |
16 | ISERBYT Eli | 55 |
17 | WIRTGEN Tom | 77 |
18 | WILLEMS Thimo | 67 |
22 | DHAEYE Enrico | 71 |
23 | CABEDO Óscar | 53 |
24 | STOSZ Patryk | 70 |
25 | WENZEL Mats | 68 |
27 | BERLIN Antoine | 57 |
28 | COLEMAN Zak | 70 |