Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight - 1
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Ronhaar
1
60 kgHuby
2
56 kgWenzel
3
68 kgEddy
5
79 kgKockelmann
6
70 kgDuckert
7
68 kgSchuch
9
64 kgLutter
12
65 kgŤoupalík
13
65 kgUry
15
68 kgBettendorff
17
74 kgCamrda
18
63 kgDhaeye
20
71 kgLauryssen
22
67 kgKällberg
23
69 kgDe Moyer
24
69 kgRogora
29
65 kgGehrke
30
78 kgRousset-Favier
31
57 kgTheiler
36
75 kgBonnet
38
63 kg
1
60 kgHuby
2
56 kgWenzel
3
68 kgEddy
5
79 kgKockelmann
6
70 kgDuckert
7
68 kgSchuch
9
64 kgLutter
12
65 kgŤoupalík
13
65 kgUry
15
68 kgBettendorff
17
74 kgCamrda
18
63 kgDhaeye
20
71 kgLauryssen
22
67 kgKällberg
23
69 kgDe Moyer
24
69 kgRogora
29
65 kgGehrke
30
78 kgRousset-Favier
31
57 kgTheiler
36
75 kgBonnet
38
63 kg
Weight (KG) →
Result →
79
56
1
38
# | Rider | Weight (KG) |
---|---|---|
1 | RONHAAR Pim | 60 |
2 | HUBY Antoine | 56 |
3 | WENZEL Mats | 68 |
5 | EDDY Patrick | 79 |
6 | KOCKELMANN Mathieu | 70 |
7 | DUCKERT Roman | 68 |
9 | SCHUCH Mike | 64 |
12 | LUTTER Eric | 65 |
13 | ŤOUPALÍK Jakub | 65 |
15 | URY Noé | 68 |
17 | BETTENDORFF Loïc | 74 |
18 | CAMRDA Karel | 63 |
20 | DHAEYE Enrico | 71 |
22 | LAURYSSEN Yorben | 67 |
23 | KÄLLBERG Axel | 69 |
24 | DE MOYER Kenay | 69 |
29 | ROGORA Kiya | 65 |
30 | GEHRKE Paul | 78 |
31 | ROUSSET-FAVIER Nicolas | 57 |
36 | THEILER Ole | 75 |
38 | BONNET Theo | 63 |