Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 10
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Ronhaar
1
60 kgStosz
3
70 kgde Jong
5
72 kgRüegg
7
66 kgPrimožič
10
60 kgWirtgen
12
77 kgKrijnsen
13
73 kgReinhardt
14
72 kgPeter
16
63 kgMeiler
18
65 kgIserbyt
19
55 kgKerckhaert
20
59 kgWenzel
21
68 kgRavasi
22
61 kgGodfroid
23
66 kgRasenberg
24
78 kgKonychev
25
76 kgCamrda
26
63 kgStüssi
28
68 kgSchuran
31
70 kgLauryssen
32
67 kgVerza
33
69 kg
1
60 kgStosz
3
70 kgde Jong
5
72 kgRüegg
7
66 kgPrimožič
10
60 kgWirtgen
12
77 kgKrijnsen
13
73 kgReinhardt
14
72 kgPeter
16
63 kgMeiler
18
65 kgIserbyt
19
55 kgKerckhaert
20
59 kgWenzel
21
68 kgRavasi
22
61 kgGodfroid
23
66 kgRasenberg
24
78 kgKonychev
25
76 kgCamrda
26
63 kgStüssi
28
68 kgSchuran
31
70 kgLauryssen
32
67 kgVerza
33
69 kg
Weight (KG) →
Result →
78
55
1
33
# | Rider | Weight (KG) |
---|---|---|
1 | RONHAAR Pim | 60 |
3 | STOSZ Patryk | 70 |
5 | DE JONG Timo | 72 |
7 | RÜEGG Lukas | 66 |
10 | PRIMOŽIČ Jaka | 60 |
12 | WIRTGEN Tom | 77 |
13 | KRIJNSEN Jelte | 73 |
14 | REINHARDT Theo | 72 |
16 | PETER Jannis | 63 |
18 | MEILER Lukas | 65 |
19 | ISERBYT Eli | 55 |
20 | KERCKHAERT Jochem | 59 |
21 | WENZEL Mats | 68 |
22 | RAVASI Edward | 61 |
23 | GODFROID Olivier | 66 |
24 | RASENBERG Martijn | 78 |
25 | KONYCHEV Alexander | 76 |
26 | CAMRDA Karel | 63 |
28 | STÜSSI Colin | 68 |
31 | SCHURAN Michal | 70 |
32 | LAURYSSEN Yorben | 67 |
33 | VERZA Riccardo | 69 |