Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0 * weight + 8
This means that on average for every extra kilogram weight a rider loses 0 positions in the result.
Álvarez
1
74 kgCubillas
1
62 kgMartín
1
56 kgMellano
3
65 kgFabbri
4
73 kgJackowiak
5
65 kgDoghetti
6
55 kgZanutta
7
57 kgPighin
7
60 kgRemelli
8
61 kgConsolidani
13
59 kgPodluzhnyy
15
71 kgBeisembay
15
73 kgGabelloni
17
68 kgMorales
20
64 kgAlvarez
20
56 kgWieland
21
64 kg
1
74 kgCubillas
1
62 kgMartín
1
56 kgMellano
3
65 kgFabbri
4
73 kgJackowiak
5
65 kgDoghetti
6
55 kgZanutta
7
57 kgPighin
7
60 kgRemelli
8
61 kgConsolidani
13
59 kgPodluzhnyy
15
71 kgBeisembay
15
73 kgGabelloni
17
68 kgMorales
20
64 kgAlvarez
20
56 kgWieland
21
64 kg
Weight (KG) →
Result →
74
55
1
21
# | Rider | Weight (KG) |
---|---|---|
1 | ÁLVAREZ Héctor | 74 |
1 | CUBILLAS Javier | 62 |
1 | MARTÍN Marco | 56 |
3 | MELLANO Ludovico Maria | 65 |
4 | FABBRI Julius | 73 |
5 | JACKOWIAK Jan Michal | 65 |
6 | DOGHETTI Thomas | 55 |
7 | ZANUTTA David | 57 |
7 | PIGHIN Christian | 60 |
8 | REMELLI Cristian | 61 |
13 | CONSOLIDANI Leonardo | 59 |
15 | PODLUZHNYY Mikhail | 71 |
15 | BEISEMBAY Mansur | 73 |
17 | GABELLONI Matteo | 68 |
20 | MORALES Jonathan | 64 |
20 | ALVAREZ Oscar | 56 |
21 | WIELAND Fabian | 64 |