Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 44
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Cooke
1
58 kgArndt
3
59 kgTeutenberg
4
64 kgWood
5
56 kgLjungskog
6
57 kgPučinskaitė
10
54 kgGunnewijk
11
67 kgBates
16
69 kgHobson
18
55 kgGilmore
20
56 kgKiesanowski
22
56 kgCarrigan
23
60 kgSandig
33
62 kgVillumsen
34
59 kgBecker
40
64 kgFernandes Silva
44
52 kgUlmer
47
64 kgSpratt
49
55 kgMullens
56
57 kg
1
58 kgArndt
3
59 kgTeutenberg
4
64 kgWood
5
56 kgLjungskog
6
57 kgPučinskaitė
10
54 kgGunnewijk
11
67 kgBates
16
69 kgHobson
18
55 kgGilmore
20
56 kgKiesanowski
22
56 kgCarrigan
23
60 kgSandig
33
62 kgVillumsen
34
59 kgBecker
40
64 kgFernandes Silva
44
52 kgUlmer
47
64 kgSpratt
49
55 kgMullens
56
57 kg
Weight (KG) →
Result →
69
52
1
56
# | Rider | Weight (KG) |
---|---|---|
1 | COOKE Nicole | 58 |
3 | ARNDT Judith | 59 |
4 | TEUTENBERG Ina-Yoko | 64 |
5 | WOOD Oenone | 56 |
6 | LJUNGSKOG Susanne | 57 |
10 | PUČINSKAITĖ Edita | 54 |
11 | GUNNEWIJK Loes | 67 |
16 | BATES Katherine | 69 |
18 | HOBSON Leigh | 55 |
20 | GILMORE Rochelle | 56 |
22 | KIESANOWSKI Joanne | 56 |
23 | CARRIGAN Sara | 60 |
33 | SANDIG Madeleine | 62 |
34 | VILLUMSEN Linda | 59 |
40 | BECKER Charlotte | 64 |
44 | FERNANDES SILVA Janildes | 52 |
47 | ULMER Sarah | 64 |
49 | SPRATT Amanda | 55 |
56 | MULLENS Peta | 57 |