Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 17
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Gilmore
2
56 kgCooke
4
58 kgBates
5
69 kgBecker
6
64 kgLjungskog
9
57 kgFernandes Silva
10
52 kgKiesanowski
12
56 kgHobson
14
55 kgArndt
15
59 kgPučinskaitė
21
54 kgGunnewijk
23
67 kgVillumsen
28
59 kgTeutenberg
31
64 kgWood
33
56 kgCarrigan
41
60 kgUlmer
46
64 kgSandig
47
62 kgSpratt
51
55 kgMullens
57
57 kg
2
56 kgCooke
4
58 kgBates
5
69 kgBecker
6
64 kgLjungskog
9
57 kgFernandes Silva
10
52 kgKiesanowski
12
56 kgHobson
14
55 kgArndt
15
59 kgPučinskaitė
21
54 kgGunnewijk
23
67 kgVillumsen
28
59 kgTeutenberg
31
64 kgWood
33
56 kgCarrigan
41
60 kgUlmer
46
64 kgSandig
47
62 kgSpratt
51
55 kgMullens
57
57 kg
Weight (KG) →
Result →
69
52
2
57
# | Rider | Weight (KG) |
---|---|---|
2 | GILMORE Rochelle | 56 |
4 | COOKE Nicole | 58 |
5 | BATES Katherine | 69 |
6 | BECKER Charlotte | 64 |
9 | LJUNGSKOG Susanne | 57 |
10 | FERNANDES SILVA Janildes | 52 |
12 | KIESANOWSKI Joanne | 56 |
14 | HOBSON Leigh | 55 |
15 | ARNDT Judith | 59 |
21 | PUČINSKAITĖ Edita | 54 |
23 | GUNNEWIJK Loes | 67 |
28 | VILLUMSEN Linda | 59 |
31 | TEUTENBERG Ina-Yoko | 64 |
33 | WOOD Oenone | 56 |
41 | CARRIGAN Sara | 60 |
46 | ULMER Sarah | 64 |
47 | SANDIG Madeleine | 62 |
51 | SPRATT Amanda | 55 |
57 | MULLENS Peta | 57 |