Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 32
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
De Vlaeminck
2
74 kgKarstens
3
74 kgMortensen
4
70 kgJanssen
9
76 kgSteevens
11
73 kgMerckx
14
74 kgKrekels
17
73 kgDolman
24
71 kgPijnen
30
72 kgRitter
38
74 kgGodefroot
44
73 kgSchutz
47
72 kgBracke
49
79 kgZoetemelk
51
68 kgSwerts
57
75 kgTschan
59
68 kgRosiers
64
78 kgBilsland
72
73 kgHarrison
81
73 kgVianelli
82
73 kg
2
74 kgKarstens
3
74 kgMortensen
4
70 kgJanssen
9
76 kgSteevens
11
73 kgMerckx
14
74 kgKrekels
17
73 kgDolman
24
71 kgPijnen
30
72 kgRitter
38
74 kgGodefroot
44
73 kgSchutz
47
72 kgBracke
49
79 kgZoetemelk
51
68 kgSwerts
57
75 kgTschan
59
68 kgRosiers
64
78 kgBilsland
72
73 kgHarrison
81
73 kgVianelli
82
73 kg
Weight (KG) →
Result →
79
68
2
82
# | Rider | Weight (KG) |
---|---|---|
2 | DE VLAEMINCK Roger | 74 |
3 | KARSTENS Gerben | 74 |
4 | MORTENSEN Leif | 70 |
9 | JANSSEN Jan | 76 |
11 | STEEVENS Harry | 73 |
14 | MERCKX Eddy | 74 |
17 | KREKELS Jan | 73 |
24 | DOLMAN Evert | 71 |
30 | PIJNEN René | 72 |
38 | RITTER Ole | 74 |
44 | GODEFROOT Walter | 73 |
47 | SCHUTZ Edy | 72 |
49 | BRACKE Ferdinand | 79 |
51 | ZOETEMELK Joop | 68 |
57 | SWERTS Roger | 75 |
59 | TSCHAN Jürgen | 68 |
64 | ROSIERS Roger | 78 |
72 | BILSLAND William | 73 |
81 | HARRISON Derek | 73 |
82 | VIANELLI Pierfranco | 73 |