Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.3 * weight + 118
This means that on average for every extra kilogram weight a rider loses -1.3 positions in the result.
Morgado
2
71 kgVan Mechelen
3
78 kgHannes
4
62 kgGruel
5
70 kgTavares
6
58 kgBisiaux
7
58 kgAzanza
10
74 kgShmidt
15
76 kgUncilla
16
61 kgFofonov
18
70 kgChamberlain
19
74 kgRagilo
20
70 kgCushway
24
67 kgDecomble
25
62 kgPlace
31
58 kgAugé
36
61 kgDelaunay
38
70 kgHue
39
64 kgLukeš
50
70 kgZabala
51
60 kgRobbins
57
66 kgTapia
67
56 kgMadina
77
65 kgGiuliano
107
63 kg
2
71 kgVan Mechelen
3
78 kgHannes
4
62 kgGruel
5
70 kgTavares
6
58 kgBisiaux
7
58 kgAzanza
10
74 kgShmidt
15
76 kgUncilla
16
61 kgFofonov
18
70 kgChamberlain
19
74 kgRagilo
20
70 kgCushway
24
67 kgDecomble
25
62 kgPlace
31
58 kgAugé
36
61 kgDelaunay
38
70 kgHue
39
64 kgLukeš
50
70 kgZabala
51
60 kgRobbins
57
66 kgTapia
67
56 kgMadina
77
65 kgGiuliano
107
63 kg
Weight (KG) →
Result →
78
56
2
107
# | Rider | Weight (KG) |
---|---|---|
2 | MORGADO António | 71 |
3 | VAN MECHELEN Vlad | 78 |
4 | HANNES Victor | 62 |
5 | GRUEL Thibaud | 70 |
6 | TAVARES Gonçalo | 58 |
7 | BISIAUX Léo | 58 |
10 | AZANZA Ibai | 74 |
15 | SHMIDT Artem | 76 |
16 | UNCILLA Mikel | 61 |
18 | FOFONOV Artem | 70 |
19 | CHAMBERLAIN Oscar | 74 |
20 | RAGILO Frank Aron | 70 |
24 | CUSHWAY Maximilian | 67 |
25 | DECOMBLE Maxime | 62 |
31 | PLACE Maxence | 58 |
36 | AUGÉ Ronan | 61 |
38 | DELAUNAY Estevan | 70 |
39 | HUE Antoine | 64 |
50 | LUKEŠ Jan | 70 |
51 | ZABALA Xabier | 60 |
57 | ROBBINS Jacques | 66 |
67 | TAPIA Adur | 56 |
77 | MADINA Aimar | 65 |
107 | GIULIANO Dario | 63 |