Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.8 * weight - 81
This means that on average for every extra kilogram weight a rider loses 1.8 positions in the result.
Grégoire
1
65 kgZomermaand
3
67 kgMartín
4
56 kgHernandez
5
54 kgPeace
7
63 kgHolmes
8
64 kgVillar
13
73 kgDijkman
18
55 kgVanhuffel
23
57 kgGonzález
26
57 kgHawker
29
62 kgO'Brien
31
59 kgUrkaregi
33
71 kgMagnoulon
44
66 kgDuclos-Lassalle
80
61 kgD'hondt
94
63 kgTammepuu
97
68 kgChurch
101
70 kg
1
65 kgZomermaand
3
67 kgMartín
4
56 kgHernandez
5
54 kgPeace
7
63 kgHolmes
8
64 kgVillar
13
73 kgDijkman
18
55 kgVanhuffel
23
57 kgGonzález
26
57 kgHawker
29
62 kgO'Brien
31
59 kgUrkaregi
33
71 kgMagnoulon
44
66 kgDuclos-Lassalle
80
61 kgD'hondt
94
63 kgTammepuu
97
68 kgChurch
101
70 kg
Weight (KG) →
Result →
73
54
1
101
# | Rider | Weight (KG) |
---|---|---|
1 | GRÉGOIRE Baptiste | 65 |
3 | ZOMERMAAND Jurgen | 67 |
4 | MARTÍN Marco | 56 |
5 | HERNANDEZ Jan | 54 |
7 | PEACE Matthew | 63 |
8 | HOLMES Wil | 64 |
13 | VILLAR Iker | 73 |
18 | DIJKMAN Daan | 55 |
23 | VANHUFFEL Matteo | 57 |
26 | GONZÁLEZ Markel | 57 |
29 | HAWKER Finlay | 62 |
31 | O'BRIEN Finn | 59 |
33 | URKAREGI Eñaut | 71 |
44 | MAGNOULON Lorik | 66 |
80 | DUCLOS-LASSALLE Hugo | 61 |
94 | D'HONDT Arne | 63 |
97 | TAMMEPUU Riko | 68 |
101 | CHURCH Nolan | 70 |