Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight + 11
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Martín
1
56 kgGrégoire
2
65 kgZomermaand
3
67 kgVillar
6
73 kgUrkaregi
10
71 kgDijkman
14
55 kgHolmes
17
64 kgVanhuffel
18
57 kgHernandez
26
54 kgPeace
31
63 kgGonzález
38
57 kgO'Brien
40
59 kgMagnoulon
42
66 kgTammepuu
45
68 kgDuclos-Lassalle
63
61 kgHawker
80
62 kgChurch
87
70 kg
1
56 kgGrégoire
2
65 kgZomermaand
3
67 kgVillar
6
73 kgUrkaregi
10
71 kgDijkman
14
55 kgHolmes
17
64 kgVanhuffel
18
57 kgHernandez
26
54 kgPeace
31
63 kgGonzález
38
57 kgO'Brien
40
59 kgMagnoulon
42
66 kgTammepuu
45
68 kgDuclos-Lassalle
63
61 kgHawker
80
62 kgChurch
87
70 kg
Weight (KG) →
Result →
73
54
1
87
# | Rider | Weight (KG) |
---|---|---|
1 | MARTÍN Marco | 56 |
2 | GRÉGOIRE Baptiste | 65 |
3 | ZOMERMAAND Jurgen | 67 |
6 | VILLAR Iker | 73 |
10 | URKAREGI Eñaut | 71 |
14 | DIJKMAN Daan | 55 |
17 | HOLMES Wil | 64 |
18 | VANHUFFEL Matteo | 57 |
26 | HERNANDEZ Jan | 54 |
31 | PEACE Matthew | 63 |
38 | GONZÁLEZ Markel | 57 |
40 | O'BRIEN Finn | 59 |
42 | MAGNOULON Lorik | 66 |
45 | TAMMEPUU Riko | 68 |
63 | DUCLOS-LASSALLE Hugo | 61 |
80 | HAWKER Finlay | 62 |
87 | CHURCH Nolan | 70 |