Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 30
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Christen
1
60 kgZanoncello
3
64 kgLutsenko
5
74 kgMalucelli
6
68 kgPeñalver
7
67 kgVoisard
8
56 kgKanter
9
68 kgReichenbach
10
64 kgPozzovivo
12
53 kgSivakov
13
70 kgBennett
15
58 kgSuaza
16
66 kgCarboni
18
61 kgTonelli
20
64 kgDouble
22
56 kgConti
23
61 kgStockman
24
67 kg
1
60 kgZanoncello
3
64 kgLutsenko
5
74 kgMalucelli
6
68 kgPeñalver
7
67 kgVoisard
8
56 kgKanter
9
68 kgReichenbach
10
64 kgPozzovivo
12
53 kgSivakov
13
70 kgBennett
15
58 kgSuaza
16
66 kgCarboni
18
61 kgTonelli
20
64 kgDouble
22
56 kgConti
23
61 kgStockman
24
67 kg
Weight (KG) →
Result →
74
53
1
24
# | Rider | Weight (KG) |
---|---|---|
1 | CHRISTEN Jan | 60 |
3 | ZANONCELLO Enrico | 64 |
5 | LUTSENKO Alexey | 74 |
6 | MALUCELLI Matteo | 68 |
7 | PEÑALVER Manuel | 67 |
8 | VOISARD Yannis | 56 |
9 | KANTER Max | 68 |
10 | REICHENBACH Sébastien | 64 |
12 | POZZOVIVO Domenico | 53 |
13 | SIVAKOV Pavel | 70 |
15 | BENNETT George | 58 |
16 | SUAZA Bernardo | 66 |
18 | CARBONI Giovanni | 61 |
20 | TONELLI Alessandro | 64 |
22 | DOUBLE Paul | 56 |
23 | CONTI Valerio | 61 |
24 | STOCKMAN Abram | 67 |