Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.7 * weight + 66
This means that on average for every extra kilogram weight a rider loses -0.7 positions in the result.
Fondriest
1
70 kgSciandri
2
75 kgBortolami
4
73 kgKonyshev
5
77 kgBartoli
7
65 kgSkibby
8
70 kgRiis
9
71 kgTafi
10
73 kgCasagrande
11
64 kgBelli
12
64 kgJaskuła
16
76 kgChiappucci
18
67 kgRichard
20
67 kgPetito
21
78 kgMeinert-Nielsen
22
73 kgHamburger
28
58 kgUgrumov
29
58 kgGotti
30
65 kgTonkov
31
70 kg
1
70 kgSciandri
2
75 kgBortolami
4
73 kgKonyshev
5
77 kgBartoli
7
65 kgSkibby
8
70 kgRiis
9
71 kgTafi
10
73 kgCasagrande
11
64 kgBelli
12
64 kgJaskuła
16
76 kgChiappucci
18
67 kgRichard
20
67 kgPetito
21
78 kgMeinert-Nielsen
22
73 kgHamburger
28
58 kgUgrumov
29
58 kgGotti
30
65 kgTonkov
31
70 kg
Weight (KG) →
Result →
78
58
1
31
# | Rider | Weight (KG) |
---|---|---|
1 | FONDRIEST Maurizio | 70 |
2 | SCIANDRI Maximilian | 75 |
4 | BORTOLAMI Gianluca | 73 |
5 | KONYSHEV Dmitry | 77 |
7 | BARTOLI Michele | 65 |
8 | SKIBBY Jesper | 70 |
9 | RIIS Bjarne | 71 |
10 | TAFI Andrea | 73 |
11 | CASAGRANDE Francesco | 64 |
12 | BELLI Wladimir | 64 |
16 | JASKUŁA Zenon | 76 |
18 | CHIAPPUCCI Claudio | 67 |
20 | RICHARD Pascal | 67 |
21 | PETITO Roberto | 78 |
22 | MEINERT-NIELSEN Peter | 73 |
28 | HAMBURGER Bo | 58 |
29 | UGRUMOV Piotr | 58 |
30 | GOTTI Ivan | 65 |
31 | TONKOV Pavel | 70 |