Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 2.4 * weight - 120
This means that on average for every extra kilogram weight a rider loses 2.4 positions in the result.
Savini
1
58 kgLucca
2
74 kgFiaschi
4
65 kgConci
5
68 kgSalmon
6
59 kgZimmermann
10
70 kgDonegà
12
65 kgCovili
15
58 kgBattistella
18
67 kgSandersson
20
70 kgEinhaus
26
72 kgBertone
29
64 kgHaller
40
68 kgRossi
43
63 kgVenchiarutti
50
64 kgScaroni
60
63 kgShauchenka
62
74 kgBaldo
65
64 kgZambelli
67
70 kgGaleno
88
63 kgBykanov
97
70 kgRivi
102
72 kgBevilacqua
105
75 kg
1
58 kgLucca
2
74 kgFiaschi
4
65 kgConci
5
68 kgSalmon
6
59 kgZimmermann
10
70 kgDonegà
12
65 kgCovili
15
58 kgBattistella
18
67 kgSandersson
20
70 kgEinhaus
26
72 kgBertone
29
64 kgHaller
40
68 kgRossi
43
63 kgVenchiarutti
50
64 kgScaroni
60
63 kgShauchenka
62
74 kgBaldo
65
64 kgZambelli
67
70 kgGaleno
88
63 kgBykanov
97
70 kgRivi
102
72 kgBevilacqua
105
75 kg
Weight (KG) →
Result →
75
58
1
105
# | Rider | Weight (KG) |
---|---|---|
1 | SAVINI Daniel | 58 |
2 | LUCCA Riccardo | 74 |
4 | FIASCHI Tommaso | 65 |
5 | CONCI Nicola | 68 |
6 | SALMON Martin | 59 |
10 | ZIMMERMANN Georg | 70 |
12 | DONEGÀ Matteo | 65 |
15 | COVILI Luca | 58 |
18 | BATTISTELLA Samuele | 67 |
20 | SANDERSSON Erik | 70 |
26 | EINHAUS Frederik | 72 |
29 | BERTONE Filippo | 64 |
40 | HALLER Patrick | 68 |
43 | ROSSI Gianmarco | 63 |
50 | VENCHIARUTTI Nicola | 64 |
60 | SCARONI Christian | 63 |
62 | SHAUCHENKA Siarhei | 74 |
65 | BALDO Mattia | 64 |
67 | ZAMBELLI Samuele | 70 |
88 | GALENO Fabrizio | 63 |
97 | BYKANOV Victor | 70 |
102 | RIVI Samuele | 72 |
105 | BEVILACQUA Simone | 75 |