Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 2.1 * weight - 100
This means that on average for every extra kilogram weight a rider loses 2.1 positions in the result.
Fiaschi
2
65 kgScaroni
6
63 kgDonegà
7
65 kgSalmon
8
59 kgHaller
10
68 kgBattistella
15
67 kgLucca
16
74 kgSavini
22
58 kgConci
24
68 kgEinhaus
27
72 kgSandersson
29
70 kgCovili
31
58 kgZimmermann
34
70 kgShauchenka
38
74 kgVenchiarutti
48
64 kgRossi
50
63 kgBertone
55
64 kgZambelli
73
70 kgGaleno
82
63 kgBaldo
83
64 kgBevilacqua
100
75 kgBykanov
110
70 kgRivi
112
72 kg
2
65 kgScaroni
6
63 kgDonegà
7
65 kgSalmon
8
59 kgHaller
10
68 kgBattistella
15
67 kgLucca
16
74 kgSavini
22
58 kgConci
24
68 kgEinhaus
27
72 kgSandersson
29
70 kgCovili
31
58 kgZimmermann
34
70 kgShauchenka
38
74 kgVenchiarutti
48
64 kgRossi
50
63 kgBertone
55
64 kgZambelli
73
70 kgGaleno
82
63 kgBaldo
83
64 kgBevilacqua
100
75 kgBykanov
110
70 kgRivi
112
72 kg
Weight (KG) →
Result →
75
58
2
112
# | Rider | Weight (KG) |
---|---|---|
2 | FIASCHI Tommaso | 65 |
6 | SCARONI Christian | 63 |
7 | DONEGÀ Matteo | 65 |
8 | SALMON Martin | 59 |
10 | HALLER Patrick | 68 |
15 | BATTISTELLA Samuele | 67 |
16 | LUCCA Riccardo | 74 |
22 | SAVINI Daniel | 58 |
24 | CONCI Nicola | 68 |
27 | EINHAUS Frederik | 72 |
29 | SANDERSSON Erik | 70 |
31 | COVILI Luca | 58 |
34 | ZIMMERMANN Georg | 70 |
38 | SHAUCHENKA Siarhei | 74 |
48 | VENCHIARUTTI Nicola | 64 |
50 | ROSSI Gianmarco | 63 |
55 | BERTONE Filippo | 64 |
73 | ZAMBELLI Samuele | 70 |
82 | GALENO Fabrizio | 63 |
83 | BALDO Mattia | 64 |
100 | BEVILACQUA Simone | 75 |
110 | BYKANOV Victor | 70 |
112 | RIVI Samuele | 72 |