Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.7 * weight - 6
This means that on average for every extra kilogram weight a rider loses 0.7 positions in the result.
Martinez
1
52 kgOioli
4
65 kgRolland
6
59 kgTachot
10
61 kgKulset
12
58 kgMattio
22
70 kgPomorski
26
76 kgIsidore
27
67 kgSvrček
28
66 kgSerafini
33
57 kgDi Camillo
38
59 kgTuka
40
57 kgSkerl
42
80 kgMinoia
52
61 kgPiffer
53
59 kgKokle
58
65 kgDi Mauro
61
63 kgKost
63
64 kgRaccagni Noviero
64
75 kgRousset-Favier
72
57 kgCavalli
73
77 kgDe Paolis
75
63 kgMuha
84
62 kg
1
52 kgOioli
4
65 kgRolland
6
59 kgTachot
10
61 kgKulset
12
58 kgMattio
22
70 kgPomorski
26
76 kgIsidore
27
67 kgSvrček
28
66 kgSerafini
33
57 kgDi Camillo
38
59 kgTuka
40
57 kgSkerl
42
80 kgMinoia
52
61 kgPiffer
53
59 kgKokle
58
65 kgDi Mauro
61
63 kgKost
63
64 kgRaccagni Noviero
64
75 kgRousset-Favier
72
57 kgCavalli
73
77 kgDe Paolis
75
63 kgMuha
84
62 kg
Weight (KG) →
Result →
80
52
1
84
# | Rider | Weight (KG) |
---|---|---|
1 | MARTINEZ Lenny | 52 |
4 | OIOLI Manuel | 65 |
6 | ROLLAND Brieuc | 59 |
10 | TACHOT Thomas | 61 |
12 | KULSET Johannes | 58 |
22 | MATTIO Pietro | 70 |
26 | POMORSKI Michał | 76 |
27 | ISIDORE Noa | 67 |
28 | SVRČEK Martin | 66 |
33 | SERAFINI Flavio | 57 |
38 | DI CAMILLO Lorenzo | 59 |
40 | TUKA Samuel | 57 |
42 | SKERL Daniel | 80 |
52 | MINOIA Sebastiano | 61 |
53 | PIFFER Christian | 59 |
58 | KOKLE Gvido | 65 |
61 | DI MAURO Federico | 63 |
63 | KOST Vitalii | 64 |
64 | RACCAGNI NOVIERO Andrea | 75 |
72 | ROUSSET-FAVIER Nicolas | 57 |
73 | CAVALLI Stefano | 77 |
75 | DE PAOLIS Federico | 63 |
84 | MUHA Luka | 62 |