Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 33
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Oioli
1
65 kgIsidore
2
67 kgTachot
5
61 kgMartinez
11
52 kgRolland
12
59 kgKulset
14
58 kgMattio
17
70 kgDi Camillo
25
59 kgPomorski
27
76 kgSkerl
34
80 kgDi Mauro
35
63 kgMinoia
37
61 kgSerafini
42
57 kgKokle
51
65 kgCavalli
52
77 kgPiffer
61
59 kgMuha
62
62 kgRaccagni Noviero
69
75 kgTuka
72
57 kgKost
73
64 kgSvrček
77
66 kgDe Paolis
78
63 kgRousset-Favier
82
57 kg
1
65 kgIsidore
2
67 kgTachot
5
61 kgMartinez
11
52 kgRolland
12
59 kgKulset
14
58 kgMattio
17
70 kgDi Camillo
25
59 kgPomorski
27
76 kgSkerl
34
80 kgDi Mauro
35
63 kgMinoia
37
61 kgSerafini
42
57 kgKokle
51
65 kgCavalli
52
77 kgPiffer
61
59 kgMuha
62
62 kgRaccagni Noviero
69
75 kgTuka
72
57 kgKost
73
64 kgSvrček
77
66 kgDe Paolis
78
63 kgRousset-Favier
82
57 kg
Weight (KG) →
Result →
80
52
1
82
# | Rider | Weight (KG) |
---|---|---|
1 | OIOLI Manuel | 65 |
2 | ISIDORE Noa | 67 |
5 | TACHOT Thomas | 61 |
11 | MARTINEZ Lenny | 52 |
12 | ROLLAND Brieuc | 59 |
14 | KULSET Johannes | 58 |
17 | MATTIO Pietro | 70 |
25 | DI CAMILLO Lorenzo | 59 |
27 | POMORSKI Michał | 76 |
34 | SKERL Daniel | 80 |
35 | DI MAURO Federico | 63 |
37 | MINOIA Sebastiano | 61 |
42 | SERAFINI Flavio | 57 |
51 | KOKLE Gvido | 65 |
52 | CAVALLI Stefano | 77 |
61 | PIFFER Christian | 59 |
62 | MUHA Luka | 62 |
69 | RACCAGNI NOVIERO Andrea | 75 |
72 | TUKA Samuel | 57 |
73 | KOST Vitalii | 64 |
77 | SVRČEK Martin | 66 |
78 | DE PAOLIS Federico | 63 |
82 | ROUSSET-FAVIER Nicolas | 57 |