Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 2.4 * weight - 115
This means that on average for every extra kilogram weight a rider loses 2.4 positions in the result.
Bole
2
69 kgStortoni
3
59 kgBrambilla
4
57 kgBisolti
6
58 kgKusztor
7
61 kgVrečer
11
68 kgNissen
24
65 kgFinetto
38
62 kgBandiera
39
68 kgDmitriyev
40
69 kgDe Marchi
41
65 kgZeits
47
73 kgSano
49
76 kgRicci Bitti
50
60 kgCraven
55
75 kgBlain
62
82 kgNakajima
74
64 kgRenev
84
68 kgFantini
94
68 kgMasson
95
68 kgStewart
97
72 kg
2
69 kgStortoni
3
59 kgBrambilla
4
57 kgBisolti
6
58 kgKusztor
7
61 kgVrečer
11
68 kgNissen
24
65 kgFinetto
38
62 kgBandiera
39
68 kgDmitriyev
40
69 kgDe Marchi
41
65 kgZeits
47
73 kgSano
49
76 kgRicci Bitti
50
60 kgCraven
55
75 kgBlain
62
82 kgNakajima
74
64 kgRenev
84
68 kgFantini
94
68 kgMasson
95
68 kgStewart
97
72 kg
Weight (KG) →
Result →
82
57
2
97
# | Rider | Weight (KG) |
---|---|---|
2 | BOLE Grega | 69 |
3 | STORTONI Simone | 59 |
4 | BRAMBILLA Gianluca | 57 |
6 | BISOLTI Alessandro | 58 |
7 | KUSZTOR Péter | 61 |
11 | VREČER Robert | 68 |
24 | NISSEN Søren | 65 |
38 | FINETTO Mauro | 62 |
39 | BANDIERA Marco | 68 |
40 | DMITRIYEV Valeriy | 69 |
41 | DE MARCHI Alessandro | 65 |
47 | ZEITS Andrey | 73 |
49 | SANO Junya | 76 |
50 | RICCI BITTI Davide | 60 |
55 | CRAVEN Dan | 75 |
62 | BLAIN Alexandre | 82 |
74 | NAKAJIMA Yasuharu | 64 |
84 | RENEV Sergey | 68 |
94 | FANTINI Alessandro | 68 |
95 | MASSON Christophe | 68 |
97 | STEWART Jackson | 72 |