Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.1 * weight - 48
This means that on average for every extra kilogram weight a rider loses 1.1 positions in the result.
Denifl
2
65 kgDe Marchi
4
65 kgSantoro
5
53 kgBerdos
10
68 kgPiechele
17
71 kgSerebryakov
21
70 kgLudescher
24
72 kgKrizek
31
74 kgPadoin
33
70 kgSchorn
35
72 kgBarle
36
72 kgPöll
37
60 kgBellis
39
69 kgBurke
40
78 kgAaen Jørgensen
48
63 kgDowsett
50
75 kgMcEvoy
54
67 kgBenfatto
56
71 kg
2
65 kgDe Marchi
4
65 kgSantoro
5
53 kgBerdos
10
68 kgPiechele
17
71 kgSerebryakov
21
70 kgLudescher
24
72 kgKrizek
31
74 kgPadoin
33
70 kgSchorn
35
72 kgBarle
36
72 kgPöll
37
60 kgBellis
39
69 kgBurke
40
78 kgAaen Jørgensen
48
63 kgDowsett
50
75 kgMcEvoy
54
67 kgBenfatto
56
71 kg
Weight (KG) →
Result →
78
53
2
56
# | Rider | Weight (KG) |
---|---|---|
2 | DENIFL Stefan | 65 |
4 | DE MARCHI Alessandro | 65 |
5 | SANTORO Antonio | 53 |
10 | BERDOS Oleg | 68 |
17 | PIECHELE Andrea | 71 |
21 | SEREBRYAKOV Alexander | 70 |
24 | LUDESCHER Philipp | 72 |
31 | KRIZEK Matthias | 74 |
33 | PADOIN Francesco | 70 |
35 | SCHORN Daniel | 72 |
36 | BARLE Florent | 72 |
37 | PÖLL Stefan | 60 |
39 | BELLIS Jonathan | 69 |
40 | BURKE Steven | 78 |
48 | AAEN JØRGENSEN Jonas | 63 |
50 | DOWSETT Alex | 75 |
54 | MCEVOY Jonathan | 67 |
56 | BENFATTO Marco | 71 |