Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 45
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Iacomoni
1
69 kgLaurance
4
63 kgKukrle
5
73 kgVergallito
6
67 kgRavasi
9
61 kgVan Asbroeck
12
55 kgDe Carlo
13
67 kgHopkins
15
74 kgZeray
17
57 kgBogna
19
66 kgRivera
20
56 kgDe Pretto
21
58 kgArrighetti
22
74 kgDe Cassan
23
61 kgNovák
24
64 kgZangerle
26
68 kgEpis
29
64 kgPrimožič
30
60 kgPotočki
31
58 kg
1
69 kgLaurance
4
63 kgKukrle
5
73 kgVergallito
6
67 kgRavasi
9
61 kgVan Asbroeck
12
55 kgDe Carlo
13
67 kgHopkins
15
74 kgZeray
17
57 kgBogna
19
66 kgRivera
20
56 kgDe Pretto
21
58 kgArrighetti
22
74 kgDe Cassan
23
61 kgNovák
24
64 kgZangerle
26
68 kgEpis
29
64 kgPrimožič
30
60 kgPotočki
31
58 kg
Weight (KG) →
Result →
74
55
1
31
# | Rider | Weight (KG) |
---|---|---|
1 | IACOMONI Federico | 69 |
4 | LAURANCE Axel | 63 |
5 | KUKRLE Michael | 73 |
6 | VERGALLITO Luca | 67 |
9 | RAVASI Edward | 61 |
12 | VAN ASBROECK Maarten | 55 |
13 | DE CARLO Giovanni | 67 |
15 | HOPKINS Dylan | 74 |
17 | ZERAY Nahom | 57 |
19 | BOGNA Alex | 66 |
20 | RIVERA Kevin | 56 |
21 | DE PRETTO Davide | 58 |
22 | ARRIGHETTI Nicolò | 74 |
23 | DE CASSAN Davide | 61 |
24 | NOVÁK Pavel | 64 |
26 | ZANGERLE Emanuel | 68 |
29 | EPIS Giosuè | 64 |
30 | PRIMOŽIČ Jaka | 60 |
31 | POTOČKI Viktor | 58 |