Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 67
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
Bronzini
1
54 kgCooke
2
58 kgValen
3
62 kgMelchers
4
59 kgDoppmann
13
55 kgStahurskaya
14
69 kgLe Floc'h
16
59 kgLjungskog
18
57 kgWood
19
56 kgPučinskaitė
23
54 kgHeeb
29
51 kgCarrigan
31
60 kgArmstrong
36
58 kgZabirova
37
65 kgKoedooder
40
69 kgGunnewijk
41
67 kgFernandes
49
54 kgSalvetat
53
55 kgMarsal
65
53 kgMatusiak
66
58 kgFernandes Silva
67
52 kg
1
54 kgCooke
2
58 kgValen
3
62 kgMelchers
4
59 kgDoppmann
13
55 kgStahurskaya
14
69 kgLe Floc'h
16
59 kgLjungskog
18
57 kgWood
19
56 kgPučinskaitė
23
54 kgHeeb
29
51 kgCarrigan
31
60 kgArmstrong
36
58 kgZabirova
37
65 kgKoedooder
40
69 kgGunnewijk
41
67 kgFernandes
49
54 kgSalvetat
53
55 kgMarsal
65
53 kgMatusiak
66
58 kgFernandes Silva
67
52 kg
Weight (KG) →
Result →
69
51
1
67
# | Rider | Weight (KG) |
---|---|---|
1 | BRONZINI Giorgia | 54 |
2 | COOKE Nicole | 58 |
3 | VALEN Anita | 62 |
4 | MELCHERS Mirjam | 59 |
13 | DOPPMANN Priska | 55 |
14 | STAHURSKAYA Zinaida | 69 |
16 | LE FLOC'H Magali | 59 |
18 | LJUNGSKOG Susanne | 57 |
19 | WOOD Oenone | 56 |
23 | PUČINSKAITĖ Edita | 54 |
29 | HEEB Barbara | 51 |
31 | CARRIGAN Sara | 60 |
36 | ARMSTRONG Kristin | 58 |
37 | ZABIROVA Zulfiya | 65 |
40 | KOEDOODER Vera | 69 |
41 | GUNNEWIJK Loes | 67 |
49 | FERNANDES Clemilda | 54 |
53 | SALVETAT Maryline | 55 |
65 | MARSAL Catherine | 53 |
66 | MATUSIAK Bogumiła | 58 |
67 | FERNANDES SILVA Janildes | 52 |