Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.6 * weight + 128
This means that on average for every extra kilogram weight a rider loses -1.6 positions in the result.
Ljungskog
1
57 kgMelchers
3
59 kgBeltman
5
68 kgLichtenberg
6
52 kgGunnewijk
10
67 kgCooke
14
58 kgBaccaille
25
61 kgWild
31
75 kgVisser
38
59 kgWyman
43
56 kgMartisova
44
64 kgGrassi
45
56 kgJohansson
46
58 kgvan den Brand
53
51 kgBronzini
61
54 kgStander
69
57 kgFernandes Silva
92
52 kg
1
57 kgMelchers
3
59 kgBeltman
5
68 kgLichtenberg
6
52 kgGunnewijk
10
67 kgCooke
14
58 kgBaccaille
25
61 kgWild
31
75 kgVisser
38
59 kgWyman
43
56 kgMartisova
44
64 kgGrassi
45
56 kgJohansson
46
58 kgvan den Brand
53
51 kgBronzini
61
54 kgStander
69
57 kgFernandes Silva
92
52 kg
Weight (KG) →
Result →
75
51
1
92
# | Rider | Weight (KG) |
---|---|---|
1 | LJUNGSKOG Susanne | 57 |
3 | MELCHERS Mirjam | 59 |
5 | BELTMAN Chantal | 68 |
6 | LICHTENBERG Claudia | 52 |
10 | GUNNEWIJK Loes | 67 |
14 | COOKE Nicole | 58 |
25 | BACCAILLE Monia | 61 |
31 | WILD Kirsten | 75 |
38 | VISSER Adrie | 59 |
43 | WYMAN Helen | 56 |
44 | MARTISOVA Julia | 64 |
45 | GRASSI Giuseppina | 56 |
46 | JOHANSSON Emma | 58 |
53 | VAN DEN BRAND Daphny | 51 |
61 | BRONZINI Giorgia | 54 |
69 | STANDER Marissa | 57 |
92 | FERNANDES SILVA Janildes | 52 |