Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 60
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
Bronzini
1
54 kgGilmore
2
56 kgBaccaille
8
61 kgFernandes Silva
15
52 kgCooke
23
58 kgMartisova
29
64 kgWild
41
75 kgLjungskog
42
57 kgVillumsen
46
59 kgMelchers
47
59 kgJohansson
51
58 kgGunnewijk
66
67 kgvan den Brand
76
51 kgFernandes
80
54 kgGrassi
83
56 kgWyman
92
56 kgVisser
96
59 kgLichtenberg
97
52 kgStander
107
57 kgBeltman
111
68 kgCantele
127
58 kg
1
54 kgGilmore
2
56 kgBaccaille
8
61 kgFernandes Silva
15
52 kgCooke
23
58 kgMartisova
29
64 kgWild
41
75 kgLjungskog
42
57 kgVillumsen
46
59 kgMelchers
47
59 kgJohansson
51
58 kgGunnewijk
66
67 kgvan den Brand
76
51 kgFernandes
80
54 kgGrassi
83
56 kgWyman
92
56 kgVisser
96
59 kgLichtenberg
97
52 kgStander
107
57 kgBeltman
111
68 kgCantele
127
58 kg
Weight (KG) →
Result →
75
51
1
127
# | Rider | Weight (KG) |
---|---|---|
1 | BRONZINI Giorgia | 54 |
2 | GILMORE Rochelle | 56 |
8 | BACCAILLE Monia | 61 |
15 | FERNANDES SILVA Janildes | 52 |
23 | COOKE Nicole | 58 |
29 | MARTISOVA Julia | 64 |
41 | WILD Kirsten | 75 |
42 | LJUNGSKOG Susanne | 57 |
46 | VILLUMSEN Linda | 59 |
47 | MELCHERS Mirjam | 59 |
51 | JOHANSSON Emma | 58 |
66 | GUNNEWIJK Loes | 67 |
76 | VAN DEN BRAND Daphny | 51 |
80 | FERNANDES Clemilda | 54 |
83 | GRASSI Giuseppina | 56 |
92 | WYMAN Helen | 56 |
96 | VISSER Adrie | 59 |
97 | LICHTENBERG Claudia | 52 |
107 | STANDER Marissa | 57 |
111 | BELTMAN Chantal | 68 |
127 | CANTELE Noemi | 58 |