Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.5 * weight + 126
This means that on average for every extra kilogram weight a rider loses -1.5 positions in the result.
Ljungskog
1
57 kgMelchers
2
59 kgBeltman
3
68 kgGunnewijk
6
67 kgLichtenberg
12
52 kgBaccaille
14
61 kgWild
22
75 kgvan den Brand
23
51 kgCooke
30
58 kgJohansson
34
58 kgVisser
45
59 kgWyman
50
56 kgGrassi
54
56 kgBronzini
68
54 kgMartisova
70
64 kgFernandes Silva
82
52 kgStander
95
57 kg
1
57 kgMelchers
2
59 kgBeltman
3
68 kgGunnewijk
6
67 kgLichtenberg
12
52 kgBaccaille
14
61 kgWild
22
75 kgvan den Brand
23
51 kgCooke
30
58 kgJohansson
34
58 kgVisser
45
59 kgWyman
50
56 kgGrassi
54
56 kgBronzini
68
54 kgMartisova
70
64 kgFernandes Silva
82
52 kgStander
95
57 kg
Weight (KG) →
Result →
75
51
1
95
# | Rider | Weight (KG) |
---|---|---|
1 | LJUNGSKOG Susanne | 57 |
2 | MELCHERS Mirjam | 59 |
3 | BELTMAN Chantal | 68 |
6 | GUNNEWIJK Loes | 67 |
12 | LICHTENBERG Claudia | 52 |
14 | BACCAILLE Monia | 61 |
22 | WILD Kirsten | 75 |
23 | VAN DEN BRAND Daphny | 51 |
30 | COOKE Nicole | 58 |
34 | JOHANSSON Emma | 58 |
45 | VISSER Adrie | 59 |
50 | WYMAN Helen | 56 |
54 | GRASSI Giuseppina | 56 |
68 | BRONZINI Giorgia | 54 |
70 | MARTISOVA Julia | 64 |
82 | FERNANDES SILVA Janildes | 52 |
95 | STANDER Marissa | 57 |