Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.7 * weight + 131
This means that on average for every extra kilogram weight a rider loses -1.7 positions in the result.
Bronzini
1
54 kgBeltman
3
68 kgGunnewijk
4
67 kgCooke
9
58 kgLjungskog
10
57 kgMelchers
13
59 kgBaccaille
16
61 kgMartisova
19
64 kgJohansson
21
58 kgWild
32
75 kgGrassi
33
56 kgLichtenberg
39
52 kgWyman
49
56 kgvan den Brand
59
51 kgStander
65
57 kgVisser
80
59 kgFernandes Silva
83
52 kg
1
54 kgBeltman
3
68 kgGunnewijk
4
67 kgCooke
9
58 kgLjungskog
10
57 kgMelchers
13
59 kgBaccaille
16
61 kgMartisova
19
64 kgJohansson
21
58 kgWild
32
75 kgGrassi
33
56 kgLichtenberg
39
52 kgWyman
49
56 kgvan den Brand
59
51 kgStander
65
57 kgVisser
80
59 kgFernandes Silva
83
52 kg
Weight (KG) →
Result →
75
51
1
83
# | Rider | Weight (KG) |
---|---|---|
1 | BRONZINI Giorgia | 54 |
3 | BELTMAN Chantal | 68 |
4 | GUNNEWIJK Loes | 67 |
9 | COOKE Nicole | 58 |
10 | LJUNGSKOG Susanne | 57 |
13 | MELCHERS Mirjam | 59 |
16 | BACCAILLE Monia | 61 |
19 | MARTISOVA Julia | 64 |
21 | JOHANSSON Emma | 58 |
32 | WILD Kirsten | 75 |
33 | GRASSI Giuseppina | 56 |
39 | LICHTENBERG Claudia | 52 |
49 | WYMAN Helen | 56 |
59 | VAN DEN BRAND Daphny | 51 |
65 | STANDER Marissa | 57 |
80 | VISSER Adrie | 59 |
83 | FERNANDES SILVA Janildes | 52 |