Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 6
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Vos
1
58 kgOlds
2
54 kgBronzini
3
54 kgvan Vleuten
4
59 kgScandolara
5
52 kgGuarischi
8
57 kgJohansson
9
58 kgWild
10
75 kgvan der Breggen
12
56 kgCecchini
13
52 kgLichtenberg
14
52 kgAntoshina
16
55 kgFerrand-Prévot
17
53 kgStevens
18
55 kgGuderzo
21
54 kgBecker
22
64 kgHosking
24
60 kg
1
58 kgOlds
2
54 kgBronzini
3
54 kgvan Vleuten
4
59 kgScandolara
5
52 kgGuarischi
8
57 kgJohansson
9
58 kgWild
10
75 kgvan der Breggen
12
56 kgCecchini
13
52 kgLichtenberg
14
52 kgAntoshina
16
55 kgFerrand-Prévot
17
53 kgStevens
18
55 kgGuderzo
21
54 kgBecker
22
64 kgHosking
24
60 kg
Weight (KG) →
Result →
75
52
1
24
| # | Rider | Weight (KG) |
|---|---|---|
| 1 | VOS Marianne | 58 |
| 2 | OLDS Shelley | 54 |
| 3 | BRONZINI Giorgia | 54 |
| 4 | VAN VLEUTEN Annemiek | 59 |
| 5 | SCANDOLARA Valentina | 52 |
| 8 | GUARISCHI Barbara | 57 |
| 9 | JOHANSSON Emma | 58 |
| 10 | WILD Kirsten | 75 |
| 12 | VAN DER BREGGEN Anna | 56 |
| 13 | CECCHINI Elena | 52 |
| 14 | LICHTENBERG Claudia | 52 |
| 16 | ANTOSHINA Tatiana | 55 |
| 17 | FERRAND-PRÉVOT Pauline | 53 |
| 18 | STEVENS Evelyn | 55 |
| 21 | GUDERZO Tatiana | 54 |
| 22 | BECKER Charlotte | 64 |
| 24 | HOSKING Chloe | 60 |