Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1 * weight - 43
This means that on average for every extra kilogram weight a rider loses 1 positions in the result.
Gavazzi
1
65 kgPasseron
3
73 kgFeillu
4
62 kgGautier
6
65 kgShpilevsky
10
78 kgGołaś
12
65 kgKireyev
14
66 kgCataldo
18
64 kgSolomennikov
19
72 kgBelkov
22
71 kgReda
26
70 kgRolland
28
70 kgMalacarne
29
63 kgGrabovskyy
33
69 kgde Jonge
35
65 kgThomas
36
71 kgKochetkov
38
70 kgRaimbekov
46
66 kgTleubayev
48
70 kgSwift
50
69 kgRenev
53
68 kgTennant
54
82 kg
1
65 kgPasseron
3
73 kgFeillu
4
62 kgGautier
6
65 kgShpilevsky
10
78 kgGołaś
12
65 kgKireyev
14
66 kgCataldo
18
64 kgSolomennikov
19
72 kgBelkov
22
71 kgReda
26
70 kgRolland
28
70 kgMalacarne
29
63 kgGrabovskyy
33
69 kgde Jonge
35
65 kgThomas
36
71 kgKochetkov
38
70 kgRaimbekov
46
66 kgTleubayev
48
70 kgSwift
50
69 kgRenev
53
68 kgTennant
54
82 kg
Weight (KG) →
Result →
82
62
1
54
# | Rider | Weight (KG) |
---|---|---|
1 | GAVAZZI Francesco | 65 |
3 | PASSERON Aurélien | 73 |
4 | FEILLU Romain | 62 |
6 | GAUTIER Cyril | 65 |
10 | SHPILEVSKY Boris | 78 |
12 | GOŁAŚ Michał | 65 |
14 | KIREYEV Roman | 66 |
18 | CATALDO Dario | 64 |
19 | SOLOMENNIKOV Andrei | 72 |
22 | BELKOV Maxim | 71 |
26 | REDA Francesco | 70 |
28 | ROLLAND Pierre | 70 |
29 | MALACARNE Davide | 63 |
33 | GRABOVSKYY Dmytro | 69 |
35 | DE JONGE Maarten | 65 |
36 | THOMAS Geraint | 71 |
38 | KOCHETKOV Pavel | 70 |
46 | RAIMBEKOV Bolat | 66 |
48 | TLEUBAYEV Ruslan | 70 |
50 | SWIFT Ben | 69 |
53 | RENEV Sergey | 68 |
54 | TENNANT Andrew | 82 |