Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1 * weight - 39
This means that on average for every extra kilogram weight a rider loses 1 positions in the result.
Gavazzi
2
65 kgPasseron
3
73 kgFeillu
4
62 kgGautier
7
65 kgShpilevsky
10
78 kgCataldo
15
64 kgKireyev
16
66 kgGołaś
17
65 kgde Jonge
20
65 kgSolomennikov
22
72 kgBelkov
23
71 kgRolland
29
70 kgMalacarne
30
63 kgSwift
36
69 kgThomas
37
71 kgReda
40
70 kgTleubayev
43
70 kgTennant
49
82 kgKochetkov
50
70 kgGrabovskyy
51
69 kgRenev
53
68 kgRaimbekov
54
66 kg
2
65 kgPasseron
3
73 kgFeillu
4
62 kgGautier
7
65 kgShpilevsky
10
78 kgCataldo
15
64 kgKireyev
16
66 kgGołaś
17
65 kgde Jonge
20
65 kgSolomennikov
22
72 kgBelkov
23
71 kgRolland
29
70 kgMalacarne
30
63 kgSwift
36
69 kgThomas
37
71 kgReda
40
70 kgTleubayev
43
70 kgTennant
49
82 kgKochetkov
50
70 kgGrabovskyy
51
69 kgRenev
53
68 kgRaimbekov
54
66 kg
Weight (KG) →
Result →
82
62
2
54
# | Rider | Weight (KG) |
---|---|---|
2 | GAVAZZI Francesco | 65 |
3 | PASSERON Aurélien | 73 |
4 | FEILLU Romain | 62 |
7 | GAUTIER Cyril | 65 |
10 | SHPILEVSKY Boris | 78 |
15 | CATALDO Dario | 64 |
16 | KIREYEV Roman | 66 |
17 | GOŁAŚ Michał | 65 |
20 | DE JONGE Maarten | 65 |
22 | SOLOMENNIKOV Andrei | 72 |
23 | BELKOV Maxim | 71 |
29 | ROLLAND Pierre | 70 |
30 | MALACARNE Davide | 63 |
36 | SWIFT Ben | 69 |
37 | THOMAS Geraint | 71 |
40 | REDA Francesco | 70 |
43 | TLEUBAYEV Ruslan | 70 |
49 | TENNANT Andrew | 82 |
50 | KOCHETKOV Pavel | 70 |
51 | GRABOVSKYY Dmytro | 69 |
53 | RENEV Sergey | 68 |
54 | RAIMBEKOV Bolat | 66 |