Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 8.6 * weight + 138
This means that on average for every extra kilogram weight a rider loses 8.6 positions in the result.
Lombardi
1
73 kgGuidi
2
73 kgPiccoli
5
64 kgChiappucci
7
67 kgVirenque
9
65 kgCasagrande
990
64 kgOdriozola
990
70 kgCamenzind
990
62 kgDonati
990
75 kgHervé
990
62 kgBrochard
990
68 kgOlano
990
70 kgBruyneel
990
71 kgLelli
990
69 kgHvastija
990
75 kgBallerini
990
78 kgBugno
990
68 kgElli
990
71 kgRichard
990
67 kg
1
73 kgGuidi
2
73 kgPiccoli
5
64 kgChiappucci
7
67 kgVirenque
9
65 kgCasagrande
990
64 kgOdriozola
990
70 kgCamenzind
990
62 kgDonati
990
75 kgHervé
990
62 kgBrochard
990
68 kgOlano
990
70 kgBruyneel
990
71 kgLelli
990
69 kgHvastija
990
75 kgBallerini
990
78 kgBugno
990
68 kgElli
990
71 kgRichard
990
67 kg
Weight (KG) →
Result →
78
62
1
990
# | Rider | Weight (KG) |
---|---|---|
1 | LOMBARDI Giovanni | 73 |
2 | GUIDI Fabrizio | 73 |
5 | PICCOLI Mariano | 64 |
7 | CHIAPPUCCI Claudio | 67 |
9 | VIRENQUE Richard | 65 |
990 | CASAGRANDE Francesco | 64 |
990 | ODRIOZOLA Jon | 70 |
990 | CAMENZIND Oscar | 62 |
990 | DONATI Massimo | 75 |
990 | HERVÉ Pascal | 62 |
990 | BROCHARD Laurent | 68 |
990 | OLANO Abraham | 70 |
990 | BRUYNEEL Johan | 71 |
990 | LELLI Massimiliano | 69 |
990 | HVASTIJA Martin | 75 |
990 | BALLERINI Franco | 78 |
990 | BUGNO Gianni | 68 |
990 | ELLI Alberto | 71 |
990 | RICHARD Pascal | 67 |