Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 2
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Zanini
1
80 kgMagnusson
2
70 kgMazzanti
3
64 kgBartoli
4
65 kgCasagrande
5
64 kgBertolini
6
63 kgVirenque
9
65 kgValoti
10
64 kgAndriotto
11
68 kgCenghialta
14
73 kgBuxhofer
15
70 kgBaliani
16
66 kgde Jongh
17
76 kgDekker
18
66 kgVelo
19
70 kgBouvard
20
70 kgBarthe
21
65 kgElli
22
71 kg
1
80 kgMagnusson
2
70 kgMazzanti
3
64 kgBartoli
4
65 kgCasagrande
5
64 kgBertolini
6
63 kgVirenque
9
65 kgValoti
10
64 kgAndriotto
11
68 kgCenghialta
14
73 kgBuxhofer
15
70 kgBaliani
16
66 kgde Jongh
17
76 kgDekker
18
66 kgVelo
19
70 kgBouvard
20
70 kgBarthe
21
65 kgElli
22
71 kg
Weight (KG) →
Result →
80
63
1
22
# | Rider | Weight (KG) |
---|---|---|
1 | ZANINI Stefano | 80 |
2 | MAGNUSSON Glenn | 70 |
3 | MAZZANTI Luca | 64 |
4 | BARTOLI Michele | 65 |
5 | CASAGRANDE Francesco | 64 |
6 | BERTOLINI Alessandro | 63 |
9 | VIRENQUE Richard | 65 |
10 | VALOTI Paolo | 64 |
11 | ANDRIOTTO Dario | 68 |
14 | CENGHIALTA Bruno | 73 |
15 | BUXHOFER Matthias | 70 |
16 | BALIANI Fortunato | 66 |
17 | DE JONGH Steven | 76 |
18 | DEKKER Erik | 66 |
19 | VELO Marco | 70 |
20 | BOUVARD Gilles | 70 |
21 | BARTHE Stéphane | 65 |
22 | ELLI Alberto | 71 |