Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -2.2 * weight + 170
This means that on average for every extra kilogram weight a rider loses -2.2 positions in the result.
Bortolami
1
73 kgNardello
2
74 kgSørensen
3
71 kgCasarotto
4
74 kgTosatto
5
74 kgCortinovis
6
68 kgFontanelli
7
68 kgPaolini
10
66 kgZberg
11
69 kgBaguet
12
67 kgRodriguez
13
68 kgGerosa
15
72 kgCarrara
16
67 kgMori
18
77 kgIvanov
19
73 kgSerpellini
20
75 kgVainšteins
54
72 kgBoogerd
59
62 kgRebellin
61
63 kg
1
73 kgNardello
2
74 kgSørensen
3
71 kgCasarotto
4
74 kgTosatto
5
74 kgCortinovis
6
68 kgFontanelli
7
68 kgPaolini
10
66 kgZberg
11
69 kgBaguet
12
67 kgRodriguez
13
68 kgGerosa
15
72 kgCarrara
16
67 kgMori
18
77 kgIvanov
19
73 kgSerpellini
20
75 kgVainšteins
54
72 kgBoogerd
59
62 kgRebellin
61
63 kg
Weight (KG) →
Result →
77
62
1
61
# | Rider | Weight (KG) |
---|---|---|
1 | BORTOLAMI Gianluca | 73 |
2 | NARDELLO Daniele | 74 |
3 | SØRENSEN Nicki | 71 |
4 | CASAROTTO Davide | 74 |
5 | TOSATTO Matteo | 74 |
6 | CORTINOVIS Alessandro | 68 |
7 | FONTANELLI Fabiano | 68 |
10 | PAOLINI Luca | 66 |
11 | ZBERG Markus | 69 |
12 | BAGUET Serge | 67 |
13 | RODRIGUEZ Fred | 68 |
15 | GEROSA Mauro | 72 |
16 | CARRARA Matteo | 67 |
18 | MORI Massimiliano | 77 |
19 | IVANOV Sergei | 73 |
20 | SERPELLINI Marco | 75 |
54 | VAINŠTEINS Romāns | 72 |
59 | BOOGERD Michael | 62 |
61 | REBELLIN Davide | 63 |