Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight - 1
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Raccani
1
64 kgPiccolo
2
64 kgMiholjević
4
72 kgPotočki
5
58 kgBenedetti
8
63 kgRaimondi
9
60 kgPetrucci
12
56 kgSandri
14
56 kgDe Cassan
15
61 kgCiuccarelli
16
55 kgDe Carlo
17
67 kgCadena
22
63 kgBusatto
23
62 kgShortt
26
62 kgZambanini
27
62 kgVisintainer
32
73 kgGhislanzoni
34
55 kgQuartucci
36
64 kgIacomoni
40
69 kgBagatin
41
75 kgParravano
45
55 kg
1
64 kgPiccolo
2
64 kgMiholjević
4
72 kgPotočki
5
58 kgBenedetti
8
63 kgRaimondi
9
60 kgPetrucci
12
56 kgSandri
14
56 kgDe Cassan
15
61 kgCiuccarelli
16
55 kgDe Carlo
17
67 kgCadena
22
63 kgBusatto
23
62 kgShortt
26
62 kgZambanini
27
62 kgVisintainer
32
73 kgGhislanzoni
34
55 kgQuartucci
36
64 kgIacomoni
40
69 kgBagatin
41
75 kgParravano
45
55 kg
Weight (KG) →
Result →
75
55
1
45
# | Rider | Weight (KG) |
---|---|---|
1 | RACCANI Simone | 64 |
2 | PICCOLO Andrea | 64 |
4 | MIHOLJEVIĆ Fran | 72 |
5 | POTOČKI Viktor | 58 |
8 | BENEDETTI Gabriele | 63 |
9 | RAIMONDI Alex | 60 |
12 | PETRUCCI Mattia | 56 |
14 | SANDRI Edoardo | 56 |
15 | DE CASSAN Davide | 61 |
16 | CIUCCARELLI Riccardo | 55 |
17 | DE CARLO Giovanni | 67 |
22 | CADENA Edgar David | 63 |
23 | BUSATTO Francesco | 62 |
26 | SHORTT Devin | 62 |
27 | ZAMBANINI Edoardo | 62 |
32 | VISINTAINER Lorenzo | 73 |
34 | GHISLANZONI Andrea | 55 |
36 | QUARTUCCI Lorenzo | 64 |
40 | IACOMONI Federico | 69 |
41 | BAGATIN Christian | 75 |
45 | PARRAVANO Francesco | 55 |