Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.9 * weight + 86
This means that on average for every extra kilogram weight a rider loses -0.9 positions in the result.
Omrzel
1
62 kgNovák
2
64 kgSchwarzbacher
6
72 kgBelletta
7
73 kgPidhainyi
18
58 kgVanoni
24
63 kgSims
25
58 kgRoberts
28
67 kgPizzi
34
64 kgArrighetti
35
74 kgAppelbaum
39
64 kgLightfoot
40
57 kgGiannelli
43
65 kgNovák
51
63 kgHarasim
52
72 kgMarivoet
58
59 kgPellegrini
67
59 kg
1
62 kgNovák
2
64 kgSchwarzbacher
6
72 kgBelletta
7
73 kgPidhainyi
18
58 kgVanoni
24
63 kgSims
25
58 kgRoberts
28
67 kgPizzi
34
64 kgArrighetti
35
74 kgAppelbaum
39
64 kgLightfoot
40
57 kgGiannelli
43
65 kgNovák
51
63 kgHarasim
52
72 kgMarivoet
58
59 kgPellegrini
67
59 kg
Weight (KG) →
Result →
74
57
1
67
# | Rider | Weight (KG) |
---|---|---|
1 | OMRZEL Jakob | 62 |
2 | NOVÁK Pavel | 64 |
6 | SCHWARZBACHER Matthias | 72 |
7 | BELLETTA Dario Igor | 73 |
18 | PIDHAINYI Andrii | 58 |
24 | VANONI Filippo | 63 |
25 | SIMS Oliver | 58 |
28 | ROBERTS John Shaw | 67 |
34 | PIZZI Nicolo' | 64 |
35 | ARRIGHETTI Nicolò | 74 |
39 | APPELBAUM Henri Johannes | 64 |
40 | LIGHTFOOT Mark | 57 |
43 | GIANNELLI Alessio | 65 |
51 | NOVÁK Samuel | 63 |
52 | HARASIM Mihnea-Alexandru | 72 |
58 | MARIVOET Duarte | 59 |
67 | PELLEGRINI Alessandro | 59 |