Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 22
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Bertogliati
1
73 kgShefer
2
68 kgCelestino
4
67 kgMazzoleni
5
67 kgGarcía Casas
6
63 kgEvans
8
64 kgBileka
9
65 kgPaolini
10
66 kgCasar
12
63 kgMazzanti
13
64 kgBouyer
14
65 kgElli
15
71 kgCunego
19
58 kgTrampusch
20
60 kgKristensen
21
70 kgRobin
22
63 kgGoubert
24
62 kgJan
25
62 kgFornaciari
26
80 kgVoigt
27
76 kgPalumbo
28
61 kgBessy
29
65 kgGustov
30
64 kg
1
73 kgShefer
2
68 kgCelestino
4
67 kgMazzoleni
5
67 kgGarcía Casas
6
63 kgEvans
8
64 kgBileka
9
65 kgPaolini
10
66 kgCasar
12
63 kgMazzanti
13
64 kgBouyer
14
65 kgElli
15
71 kgCunego
19
58 kgTrampusch
20
60 kgKristensen
21
70 kgRobin
22
63 kgGoubert
24
62 kgJan
25
62 kgFornaciari
26
80 kgVoigt
27
76 kgPalumbo
28
61 kgBessy
29
65 kgGustov
30
64 kg
Weight (KG) →
Result →
80
58
1
30
# | Rider | Weight (KG) |
---|---|---|
1 | BERTOGLIATI Rubens | 73 |
2 | SHEFER Alexandre | 68 |
4 | CELESTINO Mirko | 67 |
5 | MAZZOLENI Eddy | 67 |
6 | GARCÍA CASAS Félix Miguel | 63 |
8 | EVANS Cadel | 64 |
9 | BILEKA Volodymyr | 65 |
10 | PAOLINI Luca | 66 |
12 | CASAR Sandy | 63 |
13 | MAZZANTI Luca | 64 |
14 | BOUYER Franck | 65 |
15 | ELLI Alberto | 71 |
19 | CUNEGO Damiano | 58 |
20 | TRAMPUSCH Gerhard | 60 |
21 | KRISTENSEN Lennie | 70 |
22 | ROBIN Jean-Cyril | 63 |
24 | GOUBERT Stéphane | 62 |
25 | JAN Xavier | 62 |
26 | FORNACIARI Paolo | 80 |
27 | VOIGT Jens | 76 |
28 | PALUMBO Giuseppe | 61 |
29 | BESSY Frédéric | 65 |
30 | GUSTOV Volodymyr | 64 |