Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.5 * weight - 18
This means that on average for every extra kilogram weight a rider loses 0.5 positions in the result.
Olds
1
54 kgBronzini
3
54 kgMullens
6
57 kgHenttala
8
58 kgSmall
9
55 kgJasinska
10
57 kgBujak
11
63 kgBrennauer
12
63 kgvan den Broek-Blaak
13
64 kgAntoshina
14
55 kgBurchenkova
16
67 kgBatagelj
17
53 kgBecker
18
64 kgVillumsen
19
59 kgTrott
20
56 kgGuarischi
21
57 kgBartelloni
22
63 kg
1
54 kgBronzini
3
54 kgMullens
6
57 kgHenttala
8
58 kgSmall
9
55 kgJasinska
10
57 kgBujak
11
63 kgBrennauer
12
63 kgvan den Broek-Blaak
13
64 kgAntoshina
14
55 kgBurchenkova
16
67 kgBatagelj
17
53 kgBecker
18
64 kgVillumsen
19
59 kgTrott
20
56 kgGuarischi
21
57 kgBartelloni
22
63 kg
Weight (KG) →
Result →
67
53
1
22
# | Rider | Weight (KG) |
---|---|---|
1 | OLDS Shelley | 54 |
3 | BRONZINI Giorgia | 54 |
6 | MULLENS Peta | 57 |
8 | HENTTALA Lotta | 58 |
9 | SMALL Carmen | 55 |
10 | JASINSKA Małgorzata | 57 |
11 | BUJAK Eugenia | 63 |
12 | BRENNAUER Lisa | 63 |
13 | VAN DEN BROEK-BLAAK Chantal | 64 |
14 | ANTOSHINA Tatiana | 55 |
16 | BURCHENKOVA Alexandra | 67 |
17 | BATAGELJ Polona | 53 |
18 | BECKER Charlotte | 64 |
19 | VILLUMSEN Linda | 59 |
20 | TROTT Laura | 56 |
21 | GUARISCHI Barbara | 57 |
22 | BARTELLONI Beatrice | 63 |