Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight + 5
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Moncassin
1
73 kgMuseeuw
2
71 kgJalabert
5
66 kgMichaelsen
8
79 kgRiis
10
71 kgPedersen
14
70 kgMadouas
16
70 kgGianetti
17
62 kgDufaux
20
60 kgFignon
24
67 kgWinnen
25
60 kgBruyneel
26
71 kgden Bakker
27
71 kgMadiot
29
68 kgGayant
32
69 kgKoerts
42
78 kgVoskamp
43
75 kg
1
73 kgMuseeuw
2
71 kgJalabert
5
66 kgMichaelsen
8
79 kgRiis
10
71 kgPedersen
14
70 kgMadouas
16
70 kgGianetti
17
62 kgDufaux
20
60 kgFignon
24
67 kgWinnen
25
60 kgBruyneel
26
71 kgden Bakker
27
71 kgMadiot
29
68 kgGayant
32
69 kgKoerts
42
78 kgVoskamp
43
75 kg
Weight (KG) →
Result →
79
60
1
43
# | Rider | Weight (KG) |
---|---|---|
1 | MONCASSIN Frédéric | 73 |
2 | MUSEEUW Johan | 71 |
5 | JALABERT Laurent | 66 |
8 | MICHAELSEN Lars | 79 |
10 | RIIS Bjarne | 71 |
14 | PEDERSEN Atle | 70 |
16 | MADOUAS Laurent | 70 |
17 | GIANETTI Mauro | 62 |
20 | DUFAUX Laurent | 60 |
24 | FIGNON Laurent | 67 |
25 | WINNEN Peter | 60 |
26 | BRUYNEEL Johan | 71 |
27 | DEN BAKKER Maarten | 71 |
29 | MADIOT Marc | 68 |
32 | GAYANT Martial | 69 |
42 | KOERTS Jans | 78 |
43 | VOSKAMP Bart | 75 |