Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight - 4
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Van Petegem
1
70 kgPeers
2
73 kgMattan
3
69 kgJonker
4
69 kgRobin
6
63 kgBrandt
7
66 kgLeukemans
8
67 kgVan Hyfte
9
70 kgFédrigo
10
66 kgMuseeuw
11
71 kgFlickinger
12
78 kgRenier
13
69 kgMarichal
14
72 kgBrochard
16
68 kgMikhaylov
17
74 kgHushovd
19
83 kgHammond
20
71 kgDe Waele
22
71 kgSchnider
25
65 kgPower
26
68 kgVasseur
27
70 kg
1
70 kgPeers
2
73 kgMattan
3
69 kgJonker
4
69 kgRobin
6
63 kgBrandt
7
66 kgLeukemans
8
67 kgVan Hyfte
9
70 kgFédrigo
10
66 kgMuseeuw
11
71 kgFlickinger
12
78 kgRenier
13
69 kgMarichal
14
72 kgBrochard
16
68 kgMikhaylov
17
74 kgHushovd
19
83 kgHammond
20
71 kgDe Waele
22
71 kgSchnider
25
65 kgPower
26
68 kgVasseur
27
70 kg
Weight (KG) →
Result →
83
63
1
27
# | Rider | Weight (KG) |
---|---|---|
1 | VAN PETEGEM Peter | 70 |
2 | PEERS Chris | 73 |
3 | MATTAN Nico | 69 |
4 | JONKER Patrick | 69 |
6 | ROBIN Jean-Cyril | 63 |
7 | BRANDT Christophe | 66 |
8 | LEUKEMANS Björn | 67 |
9 | VAN HYFTE Paul | 70 |
10 | FÉDRIGO Pierrick | 66 |
11 | MUSEEUW Johan | 71 |
12 | FLICKINGER Andy | 78 |
13 | RENIER Franck | 69 |
14 | MARICHAL Thierry | 72 |
16 | BROCHARD Laurent | 68 |
17 | MIKHAYLOV Gennady | 74 |
19 | HUSHOVD Thor | 83 |
20 | HAMMOND Roger | 71 |
22 | DE WAELE Bert | 71 |
25 | SCHNIDER Daniel | 65 |
26 | POWER Ciarán | 68 |
27 | VASSEUR Cédric | 70 |