Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.9 * weight + 98
This means that on average for every extra kilogram weight a rider loses -0.9 positions in the result.
Seigneur
2
71 kgVirenque
6
65 kgCipollini
9
77 kgMoncassin
18
73 kgCapelle
19
73 kgSimon
22
70 kgVan Petegem
23
70 kgWampers
25
82 kgKoerts
42
78 kgAldag
45
75 kgBomans
46
74 kgDufaux
48
60 kgVanzella
50
78 kgRobin
51
63 kgJeker
52
72 kgBourguignon
53
72 kgEscartín
55
61 kgUgrumov
62
58 kg
2
71 kgVirenque
6
65 kgCipollini
9
77 kgMoncassin
18
73 kgCapelle
19
73 kgSimon
22
70 kgVan Petegem
23
70 kgWampers
25
82 kgKoerts
42
78 kgAldag
45
75 kgBomans
46
74 kgDufaux
48
60 kgVanzella
50
78 kgRobin
51
63 kgJeker
52
72 kgBourguignon
53
72 kgEscartín
55
61 kgUgrumov
62
58 kg
Weight (KG) →
Result →
82
58
2
62
# | Rider | Weight (KG) |
---|---|---|
2 | SEIGNEUR Eddy | 71 |
6 | VIRENQUE Richard | 65 |
9 | CIPOLLINI Mario | 77 |
18 | MONCASSIN Frédéric | 73 |
19 | CAPELLE Christophe | 73 |
22 | SIMON François | 70 |
23 | VAN PETEGEM Peter | 70 |
25 | WAMPERS Jean-Marie | 82 |
42 | KOERTS Jans | 78 |
45 | ALDAG Rolf | 75 |
46 | BOMANS Carlo | 74 |
48 | DUFAUX Laurent | 60 |
50 | VANZELLA Flavio | 78 |
51 | ROBIN Jean-Cyril | 63 |
52 | JEKER Fabian | 72 |
53 | BOURGUIGNON Thierry | 72 |
55 | ESCARTÍN Fernando | 61 |
62 | UGRUMOV Piotr | 58 |