Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 76
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Lilholt
2
72 kgGianetti
3
62 kgvan der Poel
6
70 kgMoncassin
9
73 kgJalabert
10
66 kgCapelle
15
73 kgAldag
23
75 kgArntz
27
70 kgKelly
28
77 kgArroyo
35
59 kgPedersen
40
70 kgHeirweg
43
73 kgSchur
44
73 kgEarley
55
62 kgJeker
62
72 kgMadiot
67
68 kgWinnen
72
60 kgFarazijn
75
69 kgSunderland
80
65 kgRiis
83
71 kgden Bakker
85
71 kgImboden
86
70 kgDurand
87
76 kgBugno
88
68 kg
2
72 kgGianetti
3
62 kgvan der Poel
6
70 kgMoncassin
9
73 kgJalabert
10
66 kgCapelle
15
73 kgAldag
23
75 kgArntz
27
70 kgKelly
28
77 kgArroyo
35
59 kgPedersen
40
70 kgHeirweg
43
73 kgSchur
44
73 kgEarley
55
62 kgJeker
62
72 kgMadiot
67
68 kgWinnen
72
60 kgFarazijn
75
69 kgSunderland
80
65 kgRiis
83
71 kgden Bakker
85
71 kgImboden
86
70 kgDurand
87
76 kgBugno
88
68 kg
Weight (KG) →
Result →
77
59
2
88
# | Rider | Weight (KG) |
---|---|---|
2 | LILHOLT Søren | 72 |
3 | GIANETTI Mauro | 62 |
6 | VAN DER POEL Adrie | 70 |
9 | MONCASSIN Frédéric | 73 |
10 | JALABERT Laurent | 66 |
15 | CAPELLE Christophe | 73 |
23 | ALDAG Rolf | 75 |
27 | ARNTZ Marcel | 70 |
28 | KELLY Sean | 77 |
35 | ARROYO Miguel | 59 |
40 | PEDERSEN Atle | 70 |
43 | HEIRWEG Dirk | 73 |
44 | SCHUR Jan | 73 |
55 | EARLEY Martin | 62 |
62 | JEKER Fabian | 72 |
67 | MADIOT Marc | 68 |
72 | WINNEN Peter | 60 |
75 | FARAZIJN Peter | 69 |
80 | SUNDERLAND Scott | 65 |
83 | RIIS Bjarne | 71 |
85 | DEN BAKKER Maarten | 71 |
86 | IMBODEN Heinz | 70 |
87 | DURAND Jacky | 76 |
88 | BUGNO Gianni | 68 |