Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.9 * weight - 24
This means that on average for every extra kilogram weight a rider loses 0.9 positions in the result.
Gianetti
3
62 kgVanderaerden
15
74 kgDe Clercq
16
66 kgTchmil
18
75 kgPlanckaert
21
70 kgLilholt
22
72 kgBaldato
23
60 kgPieters
24
82 kgKelly
27
77 kgEkimov
28
69 kgBauer
35
72 kgJeker
42
72 kgRobin
45
63 kgDuclos-Lassalle
46
73 kgZberg
53
72 kgVeenstra
55
70 kgMadiot
56
68 kgRoche
57
74 kgChiappucci
58
67 kgAndreu
65
77 kgMeinert-Nielsen
71
73 kgHarmeling
72
76 kg
3
62 kgVanderaerden
15
74 kgDe Clercq
16
66 kgTchmil
18
75 kgPlanckaert
21
70 kgLilholt
22
72 kgBaldato
23
60 kgPieters
24
82 kgKelly
27
77 kgEkimov
28
69 kgBauer
35
72 kgJeker
42
72 kgRobin
45
63 kgDuclos-Lassalle
46
73 kgZberg
53
72 kgVeenstra
55
70 kgMadiot
56
68 kgRoche
57
74 kgChiappucci
58
67 kgAndreu
65
77 kgMeinert-Nielsen
71
73 kgHarmeling
72
76 kg
Weight (KG) →
Result →
82
60
3
72
# | Rider | Weight (KG) |
---|---|---|
3 | GIANETTI Mauro | 62 |
15 | VANDERAERDEN Eric | 74 |
16 | DE CLERCQ Mario | 66 |
18 | TCHMIL Andrei | 75 |
21 | PLANCKAERT Jo | 70 |
22 | LILHOLT Søren | 72 |
23 | BALDATO Fabio | 60 |
24 | PIETERS Peter | 82 |
27 | KELLY Sean | 77 |
28 | EKIMOV Viatcheslav | 69 |
35 | BAUER Steve | 72 |
42 | JEKER Fabian | 72 |
45 | ROBIN Jean-Cyril | 63 |
46 | DUCLOS-LASSALLE Gilbert | 73 |
53 | ZBERG Beat | 72 |
55 | VEENSTRA Wiebren | 70 |
56 | MADIOT Marc | 68 |
57 | ROCHE Stephen | 74 |
58 | CHIAPPUCCI Claudio | 67 |
65 | ANDREU Frankie | 77 |
71 | MEINERT-NIELSEN Peter | 73 |
72 | HARMELING Rob | 76 |