Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight - 8
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Konyshev
1
77 kgSciandri
2
75 kgBruylandts
3
63 kgVerheyen
4
68 kgBlaudzun
7
66 kgSørensen
8
71 kgMuseeuw
9
71 kgBaldato
10
60 kgMazzanti
12
64 kgMartinello
13
71 kgHamburger
14
58 kgPiziks
15
70 kgLoda
16
73 kgFarazijn
17
69 kgPeeters
18
76 kgForconi
20
71 kgSerpellini
21
75 kgArtunghi
22
71 kgVan De Walle
23
74 kgDemarbaix
25
64 kgJenner
26
68 kgGuesdon
28
73 kgOrtenzi
29
78 kg
1
77 kgSciandri
2
75 kgBruylandts
3
63 kgVerheyen
4
68 kgBlaudzun
7
66 kgSørensen
8
71 kgMuseeuw
9
71 kgBaldato
10
60 kgMazzanti
12
64 kgMartinello
13
71 kgHamburger
14
58 kgPiziks
15
70 kgLoda
16
73 kgFarazijn
17
69 kgPeeters
18
76 kgForconi
20
71 kgSerpellini
21
75 kgArtunghi
22
71 kgVan De Walle
23
74 kgDemarbaix
25
64 kgJenner
26
68 kgGuesdon
28
73 kgOrtenzi
29
78 kg
Weight (KG) →
Result →
78
58
1
29
# | Rider | Weight (KG) |
---|---|---|
1 | KONYSHEV Dmitry | 77 |
2 | SCIANDRI Maximilian | 75 |
3 | BRUYLANDTS Dave | 63 |
4 | VERHEYEN Geert | 68 |
7 | BLAUDZUN Michael | 66 |
8 | SØRENSEN Nicki | 71 |
9 | MUSEEUW Johan | 71 |
10 | BALDATO Fabio | 60 |
12 | MAZZANTI Luca | 64 |
13 | MARTINELLO Silvio | 71 |
14 | HAMBURGER Bo | 58 |
15 | PIZIKS Arvis | 70 |
16 | LODA Nicola | 73 |
17 | FARAZIJN Peter | 69 |
18 | PEETERS Wilfried | 76 |
20 | FORCONI Riccardo | 71 |
21 | SERPELLINI Marco | 75 |
22 | ARTUNGHI Marco | 71 |
23 | VAN DE WALLE Jurgen | 74 |
25 | DEMARBAIX Sébastien | 64 |
26 | JENNER Christopher | 68 |
28 | GUESDON Frédéric | 73 |
29 | ORTENZI Gian Mario | 78 |