Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 24
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Saugrain
2
62 kgBouyer
4
65 kgDa Cruz
5
74 kgVoigt
7
76 kgChanteur
9
62 kgSalmon
11
60 kgLivingston
13
70 kgMorin
15
79 kgOriol
16
65 kgBarthe
17
65 kgHervé
19
62 kgGoubert
20
62 kgSimon
21
70 kgPaumier
24
57 kgBeloki
25
68 kgJan
26
62 kgZubeldia
28
68 kgBourguignon
29
72 kgJulich
30
68 kg
2
62 kgBouyer
4
65 kgDa Cruz
5
74 kgVoigt
7
76 kgChanteur
9
62 kgSalmon
11
60 kgLivingston
13
70 kgMorin
15
79 kgOriol
16
65 kgBarthe
17
65 kgHervé
19
62 kgGoubert
20
62 kgSimon
21
70 kgPaumier
24
57 kgBeloki
25
68 kgJan
26
62 kgZubeldia
28
68 kgBourguignon
29
72 kgJulich
30
68 kg
Weight (KG) →
Result →
79
57
2
30
# | Rider | Weight (KG) |
---|---|---|
2 | SAUGRAIN Cyril | 62 |
4 | BOUYER Franck | 65 |
5 | DA CRUZ Carlos | 74 |
7 | VOIGT Jens | 76 |
9 | CHANTEUR Pascal | 62 |
11 | SALMON Benoît | 60 |
13 | LIVINGSTON Kevin | 70 |
15 | MORIN Anthony | 79 |
16 | ORIOL Christophe | 65 |
17 | BARTHE Stéphane | 65 |
19 | HERVÉ Pascal | 62 |
20 | GOUBERT Stéphane | 62 |
21 | SIMON François | 70 |
24 | PAUMIER Laurent | 57 |
25 | BELOKI Joseba | 68 |
26 | JAN Xavier | 62 |
28 | ZUBELDIA Haimar | 68 |
29 | BOURGUIGNON Thierry | 72 |
30 | JULICH Bobby | 68 |