Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0 * weight + 9
This means that on average for every extra kilogram weight a rider loses 0 positions in the result.
Halgand
1
67 kgYakovlev
2
70 kgBruylandts
3
63 kgVoigt
4
76 kgBrard
5
74 kgBotcharov
6
54 kgHinault
7
63 kgMadouas
8
70 kgBouvard
9
70 kgRobin
10
63 kgTurpin
11
57 kgSánchez
13
65 kgSimon
14
70 kgDe Clercq
16
66 kgMoncoutié
17
69 kgLangella
18
76 kgBénéteau
20
67 kgDessel
21
63 kgBrochard
22
68 kg
1
67 kgYakovlev
2
70 kgBruylandts
3
63 kgVoigt
4
76 kgBrard
5
74 kgBotcharov
6
54 kgHinault
7
63 kgMadouas
8
70 kgBouvard
9
70 kgRobin
10
63 kgTurpin
11
57 kgSánchez
13
65 kgSimon
14
70 kgDe Clercq
16
66 kgMoncoutié
17
69 kgLangella
18
76 kgBénéteau
20
67 kgDessel
21
63 kgBrochard
22
68 kg
Weight (KG) →
Result →
76
54
1
22
# | Rider | Weight (KG) |
---|---|---|
1 | HALGAND Patrice | 67 |
2 | YAKOVLEV Serguei | 70 |
3 | BRUYLANDTS Dave | 63 |
4 | VOIGT Jens | 76 |
5 | BRARD Florent | 74 |
6 | BOTCHAROV Alexandre | 54 |
7 | HINAULT Sébastien | 63 |
8 | MADOUAS Laurent | 70 |
9 | BOUVARD Gilles | 70 |
10 | ROBIN Jean-Cyril | 63 |
11 | TURPIN Ludovic | 57 |
13 | SÁNCHEZ Samuel | 65 |
14 | SIMON François | 70 |
16 | DE CLERCQ Mario | 66 |
17 | MONCOUTIÉ David | 69 |
18 | LANGELLA Anthony | 76 |
20 | BÉNÉTEAU Walter | 67 |
21 | DESSEL Cyril | 63 |
22 | BROCHARD Laurent | 68 |