Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.4 * weight - 11
This means that on average for every extra kilogram weight a rider loses 0.4 positions in the result.
Voeckler
1
71 kgPaumier
2
57 kgFédrigo
3
66 kgO'Grady
5
73 kgMcLeod
6
66 kgPencolé
7
74 kgHushovd
8
83 kgCooke
13
75 kgGabriel
14
60 kgTalabardon
15
67 kgMizurov
16
68 kgKuschynski
18
65 kgRenier
19
69 kgCalzati
20
68 kgAgnolutto
21
69 kgRatti
22
64 kgGourov
23
75 kgWhite
24
72 kgAuger
25
78 kgMoncoutié
28
69 kgMangel
30
83 kg
1
71 kgPaumier
2
57 kgFédrigo
3
66 kgO'Grady
5
73 kgMcLeod
6
66 kgPencolé
7
74 kgHushovd
8
83 kgCooke
13
75 kgGabriel
14
60 kgTalabardon
15
67 kgMizurov
16
68 kgKuschynski
18
65 kgRenier
19
69 kgCalzati
20
68 kgAgnolutto
21
69 kgRatti
22
64 kgGourov
23
75 kgWhite
24
72 kgAuger
25
78 kgMoncoutié
28
69 kgMangel
30
83 kg
Weight (KG) →
Result →
83
57
1
30
# | Rider | Weight (KG) |
---|---|---|
1 | VOECKLER Thomas | 71 |
2 | PAUMIER Laurent | 57 |
3 | FÉDRIGO Pierrick | 66 |
5 | O'GRADY Stuart | 73 |
6 | MCLEOD Ian | 66 |
7 | PENCOLÉ Franck | 74 |
8 | HUSHOVD Thor | 83 |
13 | COOKE Baden | 75 |
14 | GABRIEL Frédéric | 60 |
15 | TALABARDON Yannick | 67 |
16 | MIZUROV Andrey | 68 |
18 | KUSCHYNSKI Aleksandr | 65 |
19 | RENIER Franck | 69 |
20 | CALZATI Sylvain | 68 |
21 | AGNOLUTTO Christophe | 69 |
22 | RATTI Eddy | 64 |
23 | GOUROV Maxim | 75 |
24 | WHITE Matthew | 72 |
25 | AUGER Ludovic | 78 |
28 | MONCOUTIÉ David | 69 |
30 | MANGEL Laurent | 83 |