Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.4 * weight - 65
This means that on average for every extra kilogram weight a rider loses 1.4 positions in the result.
Kelly
1
77 kgSkibby
2
70 kgJalabert
3
66 kgLlaneras
7
65 kgMarín
9
55 kgGayant
10
69 kgBallerini
19
78 kgden Bakker
24
71 kgCordes
29
70 kgRoche
37
74 kgMauri
43
68 kgBruyneel
50
71 kgWauters
55
73 kgSolleveld
60
93 kgDe Clercq
63
66 kgMuseeuw
64
71 kgHarmeling
115
76 kg
1
77 kgSkibby
2
70 kgJalabert
3
66 kgLlaneras
7
65 kgMarín
9
55 kgGayant
10
69 kgBallerini
19
78 kgden Bakker
24
71 kgCordes
29
70 kgRoche
37
74 kgMauri
43
68 kgBruyneel
50
71 kgWauters
55
73 kgSolleveld
60
93 kgDe Clercq
63
66 kgMuseeuw
64
71 kgHarmeling
115
76 kg
Weight (KG) →
Result →
93
55
1
115
# | Rider | Weight (KG) |
---|---|---|
1 | KELLY Sean | 77 |
2 | SKIBBY Jesper | 70 |
3 | JALABERT Laurent | 66 |
7 | LLANERAS Juan | 65 |
9 | MARÍN Ruber Alveiro | 55 |
10 | GAYANT Martial | 69 |
19 | BALLERINI Franco | 78 |
24 | DEN BAKKER Maarten | 71 |
29 | CORDES Tom | 70 |
37 | ROCHE Stephen | 74 |
43 | MAURI Melchor | 68 |
50 | BRUYNEEL Johan | 71 |
55 | WAUTERS Marc | 73 |
60 | SOLLEVELD Gerrit | 93 |
63 | DE CLERCQ Mario | 66 |
64 | MUSEEUW Johan | 71 |
115 | HARMELING Rob | 76 |