Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 27
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Dekkers
1
72 kgBaumann
2
72 kgErmeti
3
60 kgRast
4
80 kgGilbert
6
75 kgCaethoven
9
67 kgCoyot
10
76 kgLagutin
12
68 kgGreipel
17
80 kgDe Fauw
19
77 kgMertens
25
67 kgVansummeren
26
79 kgHovelijnck
27
75 kgSoutham
28
69 kgMcCarty
34
68 kgRosseler
37
78 kgZonneveld
41
63 kg
1
72 kgBaumann
2
72 kgErmeti
3
60 kgRast
4
80 kgGilbert
6
75 kgCaethoven
9
67 kgCoyot
10
76 kgLagutin
12
68 kgGreipel
17
80 kgDe Fauw
19
77 kgMertens
25
67 kgVansummeren
26
79 kgHovelijnck
27
75 kgSoutham
28
69 kgMcCarty
34
68 kgRosseler
37
78 kgZonneveld
41
63 kg
Weight (KG) →
Result →
80
60
1
41
# | Rider | Weight (KG) |
---|---|---|
1 | DEKKERS Hans | 72 |
2 | BAUMANN Eric | 72 |
3 | ERMETI Giairo | 60 |
4 | RAST Grégory | 80 |
6 | GILBERT Philippe | 75 |
9 | CAETHOVEN Steven | 67 |
10 | COYOT Arnaud | 76 |
12 | LAGUTIN Sergey | 68 |
17 | GREIPEL André | 80 |
19 | DE FAUW Dimitri | 77 |
25 | MERTENS Pieter | 67 |
26 | VANSUMMEREN Johan | 79 |
27 | HOVELIJNCK Kurt | 75 |
28 | SOUTHAM Tom | 69 |
34 | MCCARTY Jonathan Patrick | 68 |
37 | ROSSELER Sébastien | 78 |
41 | ZONNEVELD Thijs | 63 |