Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 65
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
De Gendt
1
73 kgBakelants
2
67 kgEijssen
4
60 kgGhyselinck
6
74 kgDebusschere
8
77 kgBoeckmans
9
76 kgVermote
11
74 kgWallays
14
77 kgTerweduwe
16
67 kgTerpstra
25
64 kgPlanckaert
28
65 kgVerraes
44
73 kgDockx
48
64 kgvan Diermen
58
69 kgKeukeleire
64
69 kgDhaene
67
73 kg
1
73 kgBakelants
2
67 kgEijssen
4
60 kgGhyselinck
6
74 kgDebusschere
8
77 kgBoeckmans
9
76 kgVermote
11
74 kgWallays
14
77 kgTerweduwe
16
67 kgTerpstra
25
64 kgPlanckaert
28
65 kgVerraes
44
73 kgDockx
48
64 kgvan Diermen
58
69 kgKeukeleire
64
69 kgDhaene
67
73 kg
Weight (KG) →
Result →
77
60
1
67
# | Rider | Weight (KG) |
---|---|---|
1 | DE GENDT Thomas | 73 |
2 | BAKELANTS Jan | 67 |
4 | EIJSSEN Yannick | 60 |
6 | GHYSELINCK Jan | 74 |
8 | DEBUSSCHERE Jens | 77 |
9 | BOECKMANS Kris | 76 |
11 | VERMOTE Julien | 74 |
14 | WALLAYS Jelle | 77 |
16 | TERWEDUWE Kenny | 67 |
25 | TERPSTRA Mike | 64 |
28 | PLANCKAERT Baptiste | 65 |
44 | VERRAES Benjamin | 73 |
48 | DOCKX Gert | 64 |
58 | VAN DIERMEN Johnny | 69 |
64 | KEUKELEIRE Jens | 69 |
67 | DHAENE Brecht | 73 |