Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1 * weight + 99
This means that on average for every extra kilogram weight a rider loses -1 positions in the result.
De Wilde
2
70 kgBaffi
4
70 kgCapelle
5
73 kgHundertmarck
7
72 kgJärmann
8
73 kgGlaus
13
67 kgPeeters
20
76 kgAldag
21
75 kgRiis
26
71 kgGianetti
27
62 kgRichard
29
67 kgHolm Sørensen
31
77 kgWabel
32
72 kgCenghialta
40
73 kgDernies
44
75 kgFignon
49
67 kgJeker
63
72 kgRominger
74
65 kg
2
70 kgBaffi
4
70 kgCapelle
5
73 kgHundertmarck
7
72 kgJärmann
8
73 kgGlaus
13
67 kgPeeters
20
76 kgAldag
21
75 kgRiis
26
71 kgGianetti
27
62 kgRichard
29
67 kgHolm Sørensen
31
77 kgWabel
32
72 kgCenghialta
40
73 kgDernies
44
75 kgFignon
49
67 kgJeker
63
72 kgRominger
74
65 kg
Weight (KG) →
Result →
77
62
2
74
# | Rider | Weight (KG) |
---|---|---|
2 | DE WILDE Etienne | 70 |
4 | BAFFI Adriano | 70 |
5 | CAPELLE Christophe | 73 |
7 | HUNDERTMARCK Kai | 72 |
8 | JÄRMANN Rolf | 73 |
13 | GLAUS Gilbert | 67 |
20 | PEETERS Wilfried | 76 |
21 | ALDAG Rolf | 75 |
26 | RIIS Bjarne | 71 |
27 | GIANETTI Mauro | 62 |
29 | RICHARD Pascal | 67 |
31 | HOLM SØRENSEN Brian | 77 |
32 | WABEL Beat | 72 |
40 | CENGHIALTA Bruno | 73 |
44 | DERNIES Michel | 75 |
49 | FIGNON Laurent | 67 |
63 | JEKER Fabian | 72 |
74 | ROMINGER Tony | 65 |