Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.2 * weight + 107
This means that on average for every extra kilogram weight a rider loses -1.2 positions in the result.
Richard
1
67 kgPiziks
2
70 kgWesemann
3
72 kgHodge
4
74 kgVogels
7
75 kgMoncassin
8
73 kgSvorada
15
76 kgSypytkowski
18
76 kgMeier
21
60 kgDe Clercq
25
66 kgVerheyen
26
68 kgThijs
29
69 kgDufaux
34
60 kgVansevenant
38
65 kgJärmann
43
73 kgMeier
46
69 kgJeker
49
72 kgVan Hyfte
53
70 kgRominger
55
65 kg
1
67 kgPiziks
2
70 kgWesemann
3
72 kgHodge
4
74 kgVogels
7
75 kgMoncassin
8
73 kgSvorada
15
76 kgSypytkowski
18
76 kgMeier
21
60 kgDe Clercq
25
66 kgVerheyen
26
68 kgThijs
29
69 kgDufaux
34
60 kgVansevenant
38
65 kgJärmann
43
73 kgMeier
46
69 kgJeker
49
72 kgVan Hyfte
53
70 kgRominger
55
65 kg
Weight (KG) →
Result →
76
60
1
55
# | Rider | Weight (KG) |
---|---|---|
1 | RICHARD Pascal | 67 |
2 | PIZIKS Arvis | 70 |
3 | WESEMANN Steffen | 72 |
4 | HODGE Stephen | 74 |
7 | VOGELS Henk | 75 |
8 | MONCASSIN Frédéric | 73 |
15 | SVORADA Ján | 76 |
18 | SYPYTKOWSKI Andrzej | 76 |
21 | MEIER Roland | 60 |
25 | DE CLERCQ Mario | 66 |
26 | VERHEYEN Geert | 68 |
29 | THIJS Erwin | 69 |
34 | DUFAUX Laurent | 60 |
38 | VANSEVENANT Wim | 65 |
43 | JÄRMANN Rolf | 73 |
46 | MEIER Armin | 69 |
49 | JEKER Fabian | 72 |
53 | VAN HYFTE Paul | 70 |
55 | ROMINGER Tony | 65 |