Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.5 * weight + 2
This means that on average for every extra kilogram weight a rider loses 0.5 positions in the result.
Duclos-Lassalle
1
73 kgGayant
2
69 kgBruyneel
7
71 kgJalabert
10
66 kgRobin
11
63 kgRoche
21
74 kgTeteriouk
25
72 kgMoreau
29
77 kgSimon
30
70 kgVirenque
31
65 kgMuseeuw
39
71 kgVerstrepen
44
66 kgHolm Sørensen
47
77 kgDjavanian
48
64 kgPeeters
51
76 kgDvorščík
52
68 kgSunderland
58
65 kgMarie
60
68 kgCapelle
70
73 kgMadouas
73
70 kgMoncassin
80
73 kg
1
73 kgGayant
2
69 kgBruyneel
7
71 kgJalabert
10
66 kgRobin
11
63 kgRoche
21
74 kgTeteriouk
25
72 kgMoreau
29
77 kgSimon
30
70 kgVirenque
31
65 kgMuseeuw
39
71 kgVerstrepen
44
66 kgHolm Sørensen
47
77 kgDjavanian
48
64 kgPeeters
51
76 kgDvorščík
52
68 kgSunderland
58
65 kgMarie
60
68 kgCapelle
70
73 kgMadouas
73
70 kgMoncassin
80
73 kg
Weight (KG) →
Result →
77
63
1
80
# | Rider | Weight (KG) |
---|---|---|
1 | DUCLOS-LASSALLE Gilbert | 73 |
2 | GAYANT Martial | 69 |
7 | BRUYNEEL Johan | 71 |
10 | JALABERT Laurent | 66 |
11 | ROBIN Jean-Cyril | 63 |
21 | ROCHE Stephen | 74 |
25 | TETERIOUK Andrei | 72 |
29 | MOREAU Francis | 77 |
30 | SIMON François | 70 |
31 | VIRENQUE Richard | 65 |
39 | MUSEEUW Johan | 71 |
44 | VERSTREPEN Johan | 66 |
47 | HOLM SØRENSEN Brian | 77 |
48 | DJAVANIAN Viatcheslav | 64 |
51 | PEETERS Wilfried | 76 |
52 | DVORŠČÍK Milan | 68 |
58 | SUNDERLAND Scott | 65 |
60 | MARIE Thierry | 68 |
70 | CAPELLE Christophe | 73 |
73 | MADOUAS Laurent | 70 |
80 | MONCASSIN Frédéric | 73 |